The measurement of perfusion and filtration of blood in biological tissue give rise to important clinical parameters used in diagnosis, follow-up, and therapy. In this paper, we address techniques for perfusion analysis using processed contrast agent concentration data from dynamic MRI acquisitions. A new methodology for analysis is evaluated and verified using synthetic data generated on a tissue geometry.
View Article and Find Full Text PDFA remarkable feature in pancreatic cancer is the propensity to metastasize early, even for small, early stage cancers. We use a computer-based pancreatic model to simulate tumor progression behavior where fluid-sensitive migration mechanisms are accounted for as a plausible driver for metastasis. The model has been trained to comply with in vitro results to determine input parameters that characterize the migration mechanisms.
View Article and Find Full Text PDFA large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency.
View Article and Find Full Text PDFData assimilation is an important discipline in geosciences that aims to combine the information contents from both prior geophysical models and observational data (observations) to obtain improved model estimates. Ensemble-based methods are among the state-of-the-art assimilation algorithms in the data assimilation community. When applying ensemble-based methods to assimilate big geophysical data, substantial computational resources are needed in order to compute and/or store certain quantities (e.
View Article and Find Full Text PDF