Publications by authors named "Gehui Liu"

Free-floating bike sharing (FFBS) attracts increasing research focusing on usage patterns, determining factors, and integrated transportation. However, existing researchers tend to overlook the variation in usage characteristics over various time ranges, particularly the usage pattern at night. This paper is conducted to fill the gap through a series of analysis approaches on FFSB in Beijing.

View Article and Find Full Text PDF

Hypoxia can cause a variety of diseases, including ischemic stroke and neurodegenerative diseases. Within a certain range of partial pressure of oxygen, cells can respond to changes in oxygen. Changes in oxygen concentration beyond a threshold will cause damage or even necrosis of tissues and organs, especially for the central nervous system.

View Article and Find Full Text PDF

Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from () and family 19 chitinases from () that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures.

View Article and Find Full Text PDF

Multiple tumor exacerbations and treatment procedures, such as extracellular matrix remodeling, metabolic reprogramming, immunological evasion, and resistance to chemotherapy and radiotherapy, are influenced by intratumoral hypoxia. It is becoming increasingly clear how hypoxia interacts with the extracellular matrix and how this affects the growth of cancer. We analyzed the published sequencing results of hypoxia-stressed mouse kidney tumor cells and found that the expression of miR-29b was significantly downregulated.

View Article and Find Full Text PDF

The fabrication of novel poly(ionic liquids)-modified polystyrene (PSt) magnetic nanospheres (PILs-PMNPs) by a one-pot miniemulsion copolymerization reaction was achieved through an efficient microwave-assisted synthesis method. The morphology, structure, and magnetic behavior of the as-prepared magnetic materials were characterized by using transmission electron microscopy, vibrating sample magnetometry, etc. The magnetic materials were utilized as sorbents for the extraction of phthalate esters (PAEs) from beverage samples followed by high-performance ultrafast liquid chromatography analysis.

View Article and Find Full Text PDF

Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave-assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as-synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high-performance liquid chromatography analysis.

View Article and Find Full Text PDF