Iodinated contrast media (ICMs) used in X-ray imaging for medical diagnostics are released into wastewater and then encountered in river water at concentrations ranging from several dozen to hundreds of µg/L, and even thousands of µg/L in hospital effluents. ICMs are considered as emerging pollutants as their occurrence and impact on ecosystems and the environment are poorly documented. Even if they are considered inert for humans, aquatic organisms are continuously exposed to ICMs, and their potential deleterious effects are therefore questioned as we have recently demonstrated that they enter into organisms such as the zebra mussels.
View Article and Find Full Text PDFThe occurrence of iodinated contrast agents (ICAs) in the aquatic environment is relatively well documented, showing that these compounds can be found at several µg/L in natural waters, and up to hundreds of µg/L in waste water treatment plants inlets. Nevertheless, only few studies address their potential impacts and fate in aquatic organisms mainly because these compounds are considered non-toxic due to their intrinsic properties. However, as aquatic organisms are continuously exposed to these compounds, they could nonetheless induce some adverse effects on aquatic populations like filter feeder organisms.
View Article and Find Full Text PDFBiomonitoring appears to be a key approach to assess chemical or microbiological contaminations. The freshwater mussel, Dreissena polymorpha (D. polymorpha), is a suitable tool already used to monitor chemical and, more recently, microbiological pollution.
View Article and Find Full Text PDFNowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua.
View Article and Find Full Text PDFThe detection all pathogenic enteric viruses in water is expensive, time-consuming, and limited by numerous technical difficulties. Consequently, using reliable indicators such as F-specific RNA phages (FRNAPH) can be well adapted to assess the risk of viral contamination of fecal origin in surface waters. However, the variability of results inherent to the water matrix makes it difficult to use them routinely and to interpret viral risk.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
February 2024
The zebra mussel Dreissena polymorpha (Pallas, 1771) is an invasive species and a valuable bioindicator in the inland waters. Nevertheless, the biochemical reasons for the unique competitiveness of zebra mussels are not clear. This study aimed to compare the native and invasive populations of D.
View Article and Find Full Text PDFAquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.
View Article and Find Full Text PDFThe zebra mussel, , is extensively used as a sentinel species for biosurveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies. However, its metabolome remains poorly understood, particularly in light of the potential molecular sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and inter-organ differences in the metabolome suggest variability in responsiveness, which can influence the analysis and interpretation of data, particularly in the case where males and females would be analyzed indifferently.
View Article and Find Full Text PDFProteogenomic methodologies have enabled the identification of protein sequences in wild species without annotated genomes, shedding light on molecular mechanisms affected by pollution. However, proteomic resources for sentinel species are limited, and organ-level investigations are necessary to expand our understanding of their molecular biology. This study presents proteomic resources obtained from proteogenomic analyses of key organs (hepatopancreas, gills, hemolymph) from three established aquatic sentinel invertebrate species of interest in ecotoxicological/ecological research and environmental monitoring: Gammarus fossarum, Dreissena polymorpha, and Palaemon serratus.
View Article and Find Full Text PDFMonitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs.
View Article and Find Full Text PDFMussels are constantly exposed to various pollutants in the environment, which can impair their immune defences against microbes and thus threaten their survival. In this study, we expand the insight into a key parameter of immune response in two mussel species by exploring the impact of exposure to pollutants or bacteria or simultaneous chemical and biological exposure on haemocyte motility. Basal haemocyte velocity in primary culture was high and increasing over time in Mytilus edulis (mean cell speed of 2.
View Article and Find Full Text PDFThe Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant.
View Article and Find Full Text PDFArch Environ Contam Toxicol
May 2023
In this study, we focused on evaluating the responses of the cockle, Cerastoderma glaucum to in situ exposures to metals at three sites in the Gulf of Gabes in the coastal zone of Tunisia differing in levels of metal contamination. Firstly, we examined the general physiological state of the organisms. Secondly, we evaluated the bioaccumulation of several metals (Cd, Cu, Zn, Ni) in the cockles.
View Article and Find Full Text PDFBiomonitoring at the scale of the aquatic continuum and based on biomarkers, requires various representative species and a knowledge of their sensitivity to contaminants. Mussel immunomarkers are established tools for evaluating immunotoxic stress, but little is known about the consequences of an immune activation by local microorganisms on their response to pollution. This study aims to compare the sensitivity of cellular immunomarkers in two mussel species from different environments, the marine mussel Mytilus edulis (blue mussel) and the freshwater mussel Dreissena polymorpha (zebra mussel), to chemical stressors combined with bacterial challenge.
View Article and Find Full Text PDFAnthropogenic chemicals as emerging contaminants, such as pharmaceuticals, increased worldwide in the environment. This study aimed to apply metabolomics-based approaches on the fish model species three-spined stickleback (Gasterosteus aculeatus) exposed to diclofenac (DCF) to identify toxicity pathways and potential biomarkers. For this purpose, males and females were exposed to a continuous flow of diclofenac solution in laboratory for 21 days, followed by 3 days of depuration, to nominal concentrations of 1 (low) and 100 μg/L (high) of DCF.
View Article and Find Full Text PDFMollusks are very sensitive to aquatic environmental alterations and then, are important bio-indicators for monitoring the contamination of water bodies. Iodinated X-ray contrast media (ICMs) are ubiquitously present in the aquatic environment, primarily due to their high consumption for diagnosis purposes, high injection levels, low biodegradability, and low removal rates by wastewater treatment plants. Although these compounds are assumed to be of low toxicity, aquatic organisms are continuously exposed to these agents, which may result in adverse effects as ICMs can act as iodine source and disrupt the endocrine system.
View Article and Find Full Text PDFWater is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback () through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach.
View Article and Find Full Text PDFA biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus.
View Article and Find Full Text PDFEnvironmental metabolomics has become a growing research field to understand biological and biochemical perturbations of organisms in response to various abiotic or biotic stresses. It focuses on the comprehensive and systematic analysis of a biologic system's metabolome. This allows the recognition of biochemical pathways impacted by a stressor, and the identification of some metabolites as biomarkers of potential perturbations occurring in a body.
View Article and Find Full Text PDFThe protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii can be transmitted to humans through shellfish consumption. No standardized methods are available for their detection in these foods, and the performance of the applied methods are rarely described in occurrence studies.
View Article and Find Full Text PDFThe uses of bivalve molluscs in environmental biomonitoring have recently gained momentum due to their ability to indicate and concentrate human pathogenic microorganisms. In the context of the health crisis caused by the COVID-19 epidemic, the objective of this study was to determine if the SARS-CoV-2 ribonucleic acid genome can be detected in zebra mussels (Dreissena polymorpha) exposed to raw and treated urban wastewaters from two separate plants to support its interest as bioindicator of the SARS-CoV-2 genome contamination in water. The zebra mussels were exposed to treated wastewater through caging at the outlet of two plants located in France, as well as to raw wastewater in controlled conditions.
View Article and Find Full Text PDFThe potential health risks associated with the pharmaceuticals released into the environment through effluents from sewage treatment plants have become a major cause for concern. Owing to the lack of effective indicators, monitoring the concentration of these pollutants in the aquatic environment is challenging. The aim of this study was to assess the toxicity of a mixture of five pharmaceutical drugs (paracetamol, carbamazepine, diclofenac, irbesartan, and naproxen) using the aquatic moss Fontinalis antipyretica as a bioindicator and bioaccumulator.
View Article and Find Full Text PDFThe heteronuclear single quantum correlation (HSQC) experiment developed by Bodenhausen and Ruben (1980) in the early days of modern nuclear magnetic resonance (NMR) is without a doubt one of the most widely used experiments, with applications in almost every aspect of NMR including metabolomics. Acquiring this experiment, however, always implies a trade-off: simplification versus resolution. Here, we present a method that artificially lifts this barrier and demonstrate its application towards metabolite identification in a complex mixture.
View Article and Find Full Text PDFAims: The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time.
View Article and Find Full Text PDF