The activity of sodium glucose co-transporter 2 (SGLT2) has always been an important parameter influencing chronic kidney disease in type-2 diabetic patients. Herein, we have meticulously designed, synthesized, and evaluated several novel steroidal pyrimidine molecules that possess the capability to successfully bind to the SGLT2 protein and inhibit its activity, thereby remedying kidney-related ailments in diabetic patients. The lead steroidal pyrimidine compounds were selected after virtually screening from a library of probable -heterocyclic steroidal scaffolds.
View Article and Find Full Text PDFHarvesting triplets in metal-free organic frameworks at ambient conditions and finding appropriate applications are a formidable challenge. Herein, we report a donor-acceptor-type system composed of carbazole and fused 2-chromene coumarin derivative, exhibiting triplet harvesting thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) behavior in solid and aggregated states, respectively. The presence of an sp linker and the introduction of a selected cyano/ester group in the acceptor result in twisted D-A architectures, further assisting in the suppression of nonradiative deactivation via through-space charge transfer and H-bonding interactions, fulfilling the stringent requirements for the simultaneous process of TADF and AIE, successively.
View Article and Find Full Text PDFHerein, we report the synthesis of a novel class of substituted androst[17,16- b]pyridines (pyridosteroids) from the reaction of β-formyl enamides with alkynes in high yields. The optimized reaction protocol was extended to acyclic and cyclic β-formyl enamides to afford nonsteroidal pyridines. Cell survival assay of all compounds were carried against prostate cancer PC-3 cells wherein 3-hydroxy-5-en-2',3'-dicarbethoxy-androst[17,16- b]pyridine showed the highest cytotoxic activity.
View Article and Find Full Text PDF