Purpose: Traditionally, initial and weekly chart checks involve checking various parameters in the treatment management system against the expected treatment parameters and machine settings. This process is time-consuming and labor intensive. We explore utilizing the Varian TrueBeam log files (Varian Medical System, Palo Alto, CA), which contain the complete delivery parameters for an end-to-end verification of daily patient treatments.
View Article and Find Full Text PDFPurpose: A robust, efficient, and reliable quality assurance (QA) process is highly desired for modern external beam radiation therapy treatments. Here, we report the results of a semiautomatic, pretreatment, patient-specific QA process based on dynamic machine log file analysis clinically implemented for intensity modulated radiation therapy (IMRT) treatments delivered by high energy linear accelerators (Varian 2100/2300 EX, Trilogy, iX-D, Varian Medical Systems Inc, Palo Alto, CA). The multileaf collimator machine (MLC) log files are called Dynalog by Varian.
View Article and Find Full Text PDFPurpose: The intensity modulated radiation therapy (IMRT) patient-specific quality assurance (QA) (referred to as QA in this paper for simplicity) process is a time and resource intensive effort in every clinic. The use of a global QA tolerance criterion for all treatment sites may be too tight for some complex sites increasing false negatives and rejections of QA measurements which typically results in wasted efforts, treatment delays, and decreased efficiency. At the same time, other sites requiring a less complex plan might have a high false positive leading to approvals of QA measurements that actually need to be rejected.
View Article and Find Full Text PDFExperimental methods are commonly used for patient-specific IMRT delivery verification. There are a variety of IMRT QA techniques which have been proposed and clinically used with a common understanding that not one single method can detect all possible errors. The aim of this work was to compare the efficiency and effectiveness of independent dose calculation followed by machine log file analysis to conventional measurement-based methods in detecting errors in IMRT delivery.
View Article and Find Full Text PDFPurpose: To investigate a protocol which efficiently localizes TomoTherapy patients with a scout imaging (topogram) mode that can be used with or instead of 3D megavoltage computed tomography (MVCT) imaging.
Methods: The process presented here is twofold: (a) The acquisition of the topogram using the TomoTherapy MV imaging system and (b) the generation of a digitally reconstructed topogram (DRT) derived from a standard kV CT simulation data set. The unique geometric characteristics of the current TomoTherapy imaging system were explored both theoretically and by acquiring topograms of anthropomorphic phantoms and comparing these images to DRT images.
Int J Radiat Oncol Biol Phys
September 2010
Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets.
View Article and Find Full Text PDFThe goal of this article is to present the algorithm for DMLC leaf control capable of delivering IMRT to tumors that experience motion in two dimensions in the beams eye view (BEV) plane. The generic, two-dimensional (2D) motion of the projection of the rigid target on BEV plane can be divided into two components. The first component describes the motion of the projection of the target along the x axis (parallel to the MLC leaf motions) and the other describes the motion of the target projection on the y axis (perpendicular to the leaf motion direction).
View Article and Find Full Text PDF