Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market.
View Article and Find Full Text PDFThis research provides information about combinations of several amino acids, including l-proline (Pro), l-arginine (Arg), and l-histidine (His), with phenoxyacetic acid herbicides (MCPA and 2,4-D). Five amino acid ionic liquids (AAILs), one amino acid higher-melting salt (AAHMS), and two amino acid liquid cocrystals (AALCs) were obtained in high yields (>90%). The ionization of the six new structures was confirmed by NMR, IR, and molecular modeling.
View Article and Find Full Text PDFThe subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2021
Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 μJ cm , albeit with a low photoluminescence quantum yield.
View Article and Find Full Text PDFInterpenetration in metal-organic frameworks (MOFs) is an intriguing phenomenon with significant impacts on their properties, and functional applications. Herein, we show that a 7-fold interpenetrated MOF (1) is transformed into an 8-fold interpenetrated MOF by the loss of DMF in a single-crystal-to-single-crystal manner. This is accompanied by a giant enhancement of the second harmonic generation (SHG ca.
View Article and Find Full Text PDFSulfonamide drugs are well known antibacterial and antimicrobial molecules for pharmaceutical development. Building a library of suitable supramolecular synthons for the sulfonamide functional group and understanding their crystal structures with partner coformer molecules continues to be a challenge in crystal engineering. Although a few sulfonamide cocrystals with amides and -oxides have been reported, the body of work on sulfonamide synthons is limited compared with those that have carb-oxy-lic acids and carboxamides.
View Article and Find Full Text PDFCocrystals of acemetacin drug (ACM) with nicotinamide (NAM), -aminobenzoic acid (PABA), valerolactam (VLM) and 2-pyridone (2HP) were prepared by melt crystallization and their X-ray crystal structures determined by high-resolution powder X-ray diffraction. The powerful technique of structure determination from powder data (SDPD) provided details of molecular packing and hydrogen bonding in pharmaceutical cocrystals of acemetacin. ACM-NAM occurs in anhydrate and hydrate forms, whereas the other structures crystallized in a single crystalline form.
View Article and Find Full Text PDFPharmaceutical cocrystals belong to a sub-class of cocrystals wherein one of the components is a drug molecule (or an active pharmaceutical ingredient, API) and the second is a benign food or drug grade additive (generally regarded as safe, GRAS). The two components are hydrogen-bonded in a fixed stoichiometric ratio in the crystal lattice. In the past decade, pharmaceutical cocrystals have demonstrated significant promise in their ability to modify the physicochemical and pharmacokinetic properties of drug substances, such as the solubility and dissolution rate, bioavailability, particle morphology and size, tableting and compaction, melting point, physical form, biochemical and hydration stability, and permeability.
View Article and Find Full Text PDFA novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide.
View Article and Find Full Text PDFChem Commun (Camb)
November 2015
SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.
View Article and Find Full Text PDFThe design of novel supramolecular synthons for functional groups relevant to drugs is an essential prerequisite for applying crystal engineering in the development of novel pharmaceutical cocrystals. It has been convincingly shown over the past decade that molecular level control and modulation can influence the physicochemical properties of drug cocrystals. Whereas considerable advances have been reported on the design of cocrystals for carboxylic acids and carboxamide functional groups, the sulfonamide group, which is a cornerstone of sulfa drugs, is relatively unexplored for reproducible heterosynthon-directed crystal engineering.
View Article and Find Full Text PDFAcemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing.
View Article and Find Full Text PDF