Reactive oxygen species (ROS) stimulate cell proliferation and induce genetic instability, and their increase in cancer cells is often viewed as an adverse event. Here, we show that such abnormal increases in ROS can be exploited to selectively kill cancer cells using beta-phenylethyl isothiocyanate (PEITC). Oncogenic transformation of ovarian epithelial cells with H-Ras(V12) or expression of Bcr-Abl in hematopoietic cells causes elevated ROS generation and renders the malignant cells highly sensitive to PEITC, which effectively disables the glutathione antioxidant system and causes severe ROS accumulation preferentially in the transformed cells due to their active ROS output.
View Article and Find Full Text PDFChalcones and their derivatives have been shown to have potent anticancer activity. However, the exact mechanisms of cytotoxic activity remain to be established. In this study, we have evaluated a series of boronic chalcones for their anticancer activity and mechanisms of action.
View Article and Find Full Text PDFA series of novel chalcones and bis-chalcones containing boronic acid moieties has been synthesized and evaluated for antitumor activity against the human breast cancer MDA-MB-231 (estrogen receptor-negative) and MCF7 (estrogen receptor-positive) cell lines and against two normal breast epithelial cell lines, MCF-10A and MCF-12A. These molecules inhibited the growth of the human breast cancer cell lines at low micromolar to nanomolar concentrations, with five of them (1-4, 9) showing preferential inhibition of the human breast cancer cell lines. Furthermore, bis-chalcone 8 exhibited a more potent inhibition of colon cancer cells expressing wild-type p53 than of an isogenic cell line that was p53-null.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) mutations and deletions are frequently observed in cancer, and contribute to altered energy metabolism, increased reactive oxygen species (ROS), and attenuated apoptotic response to anticancer agents. The mechanisms by which cells maintain mitochondrial genomic integrity and the reason why cancer cells exhibit more frequent mtDNA mutations remain unclear. Here, we report that the tumor suppressor molecule p53 has a novel role in maintaining mitochondrial genetic stability through its ability to translocate to mitochondria and interact with mtDNA polymerase gamma (pol gamma) in response to mtDNA damage induced by exogenous and endogenous insults including ROS.
View Article and Find Full Text PDFThe tumor suppressor p53 plays an important role in the regulation of cellular response to DNA damage. Recent studies suggest that p53 is able to bind DNA with certain structural alterations in a sequence-independent manner and to interact with several molecules involved in DNA repair. This study was undertaken to test the hypothesis that p53 may participate in sensing oxidative DNA damage, the most frequently occurring spontaneous DNA lesion, and modulate its repair by the base excision repair (BER) machinery.
View Article and Find Full Text PDFExpert Opin Ther Targets
December 2001
Superoxide dismutase (SOD) is a critical enzyme responsible for the elimination of superoxide radicals and is considered to be a key anti-oxidant in aerobic cells. Cellular consumption of oxygen is essential for oxidative phosphorylation during ATP generation in the mitochondria, yet this cellular metabolism also leads to the production of reactive oxygen species (ROS), including the superoxide radical (O(2)(*)(-)) and hydrogen peroxide (H(2)O(2)). Accumulation of ROS results in cellular oxidative stress and, if not corrected, can lead to the damage of important biomolecules such as membrane lipids, proteins and DNA.
View Article and Find Full Text PDF(E)-2'-deoxy-2'-(fluoromethylene)cytidine (FMdC) is a new analog of deoxycytidine with promising anticancer activity. We investigated the action of FMdC on DNA metabolism by evaluating its incorporation into DNA, its excision from DNA in vitro, and the role of the incorporation of FMdC into DNA in causing cytotoxicity. In vitro DNA primer extension demonstrated that FMdC nucleotides were incorporated with relatively high substrate efficiency into the C sites of the elongating DNA strand.
View Article and Find Full Text PDF