Publications by authors named "Geet Rakala"

We obtain the phase diagram of fully packed hard plates on the cubic lattice. Each plate covers an elementary plaquette of the cubic lattice and occupies its four vertices, with each vertex of the cubic lattice occupied by exactly one such plate. We consider the general case with fugacities s_{μ} for "μ plates," whose normal is the μ direction (μ=x,y,z).

View Article and Find Full Text PDF

We study the phase diagram of a lattice gas of 2×2×1 hard plates on the three-dimensional cubic lattice. Each plate covers an elementary plaquette of the cubic lattice, with the constraint that a site can belong to utmost one plate. We focus on the isotropic system, with equal fugacities for the three orientations of plates.

View Article and Find Full Text PDF

We study the distribution of lengths and other statistical properties of worms constructed by Monte Carlo worm algorithms in the power-law three-sublattice ordered phase of frustrated triangular and kagome lattice Ising antiferromagnets. Viewing each step of the worm construction as a position increment (step) of a random walker, we demonstrate that the persistence exponent θ and the dynamical exponent z of this random walk depend only on the universal power-law exponents of the underlying critical phase and not on the details of the worm algorithm or the microscopic Hamiltonian. Further, we argue that the detailed balance condition obeyed by such worm algorithms and the power-law correlations of the underlying equilibrium system together give rise to two related properties of this random walk: First, the steps of the walk are expected to be power-law correlated in time.

View Article and Find Full Text PDF

We report on the development of two dual worm constructions that lead to cluster algorithms for efficient and ergodic Monte Carlo simulations of frustrated Ising models with arbitrary two-spin interactions that extend up to third-neighbors on the triangular lattice. One of these algorithms generalizes readily to other frustrated systems, such as Ising antiferromagnets on the Kagome lattice with further neighbor couplings. We characterize the performance of both these algorithms in a challenging regime with power-law correlations at finite wave vector.

View Article and Find Full Text PDF