Background: Standard approaches for the assessment of Man via the Environment exposure are designed to be conservative. However, propagating these exposures into health impact assessment might lead to questionable socio-economic costs.
Objective: The objective of this study was to develop a novel tiered modelling approach to assess human exposure to lead (Pb) via the environment.
The goal is to optimize and show the validity of an in vitro method for inhalation testing of petroleum substances and their constituents at the air-liquid interface (ALI). The approach is demonstrated in a pilot study with ethylbenzene (EB), a mono-constituent petroleum substance, using a human alveolar epithelial cell line model. This included the development and validation of a generation facility to obtain EB vapors and the optimization of an exposure system for a negative control (clean air, CA), positive control (nitrogen dioxide), and EB vapors.
View Article and Find Full Text PDF-based new approach methodologies (NAMs) provide a pragmatic solution to animal testing of petroleum substances and their constituents. A previous study exposed an in vitro model (A549 cells) at the air-liquid interface (ALI) to assess inhalation toxicity of a single compound, ethylbenzene. Experimental conditions using VITROCELL 24/48 exposure system were optimized to achieve a deposition efficiency that resulted in dose-dependent biological changes.
View Article and Find Full Text PDFIndoor air quality has been recognized by the Flemish authorities as an important policy field in view of protection of public health. In 2018, the revised Flemish Indoor Air Decree (Belgisch Staatsblad, 2018), entered into force in Flanders and is applicable for dwellings and publicly accessible buildings (PAB). The Decree is based on three pillars, 1) creating awareness on the importance of good indoor air quality for health, 2) a service for indoor air dwelling examination in case of health complaints that are likely provoked by bad indoor air, and 3) target and intervention guidance values for chemical, physical and biotic factors in the indoor environment.
View Article and Find Full Text PDFThe aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model.
View Article and Find Full Text PDFAs numerous studies have indicated that food ingestion is the most important exposure pathway to several phthalates, this study aimed to determine possible contamination pathways of phthalates in food products sold on the Belgian market. To do this, concentrations of eight phthalates (dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzylbutyl phthalate (BBP), dicyclohexyl phthalate (DCHP), di(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP)) were determined in 591 foods and 30 packaging materials. In general, the four most prominent phthalates in Belgian food products were DEHP, DiBP, DnBP and BBP.
View Article and Find Full Text PDFHazard classification of waste is a necessity, but the hazard properties (named "H" and soon "HP") are still not all defined in a practical and operational manner at EU level. Following discussion of subsequent draft proposals from the Commission there is still no final decision. Methods to implement the proposals have recently been proposed: tests methods for physical risks, test batteries for aquatic and terrestrial ecotoxicity, an analytical package for exhaustive determination of organic substances and mineral elements, surrogate methods for the speciation of mineral elements in mineral substances in waste, and calculation methods for human toxicity and ecotoxicity with M factors.
View Article and Find Full Text PDFPetroleum substances are used in large quantities, primarily as fuels. They are complex mixtures whose major constituents are hydrocarbons derived from crude oil by distillation and fractionation. Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the huge number of molecular components.
View Article and Find Full Text PDFNumerous studies have indicated that for phthalates, the intake of contaminated foods is the most important exposure pathway for the general population. Up to now, data on dietary phthalate intake are scarce and - to the authors' knowledge - not available for the Belgian population. Therefore, the purpose of this study was: (1) to assess the long-term intake of the Belgian population for eight phthalates considering different exposure scenarios (benzylbutyl phthalate (BBP); di-n-butyl phthalate (DnBP); dicyclohexyl phthalate (DCHP); di(2-ethylhexyl) phthalate (DEHP); diethyl phthalate (DEP); diisobutyl phthalate (DiBP); dimethyl phthalate (DMP), di-n-octyl phthalate (DnOP)); (2) to evaluate the intake of BBP, DnBP, DEP and DEHP against tolerable daily intake (TDI) values; and (3) to assess the contribution of the different food groups to the phthalate intake.
View Article and Find Full Text PDF