Publications by authors named "Geert Reitsma"

Time-resolved XUV-IR photoion mass spectroscopy of naphthalene conducted with broadband as well as with wavelength-selected narrowband XUV pulses reveals a rising probability of fragmentation characterized by a lifetime of 92 ± 4 fs. This lifetime is independent of the XUV excitation wavelength and is the same for all low appearance energy fragments recorded in the experiment. Analysis of the experimental data in conjunction with a statistical multistate vibronic model suggests that the experimental signals track vibrational energy redistribution on the potential energy surface of the ground-state cation.

View Article and Find Full Text PDF

Rapid energy transfer from electronic to nuclear degrees of freedom underlies many biological processes and astrophysical observations. The efficiency of this energy transfer depends strongly on the complex interplay between electronic and nuclear motions. In this study, we report two-color pump-probe experiments that probe the relaxation dynamics of highly excited cationic states of naphthalene, a prototypical polycyclic aromatic hydrocarbon molecule, which are produced using wavelength-selected, ultrashort extreme ultraviolet pulses.

View Article and Find Full Text PDF

Time-resolved valence photoelectron spectroscopy is an established tool for studies of ultrafast molecular dynamics in the gas phase. Here we demonstrate time-resolved XUV photoelectron spectroscopy from dilute aqueous solutions of organic molecules, paving the way to application of this method to photodynamics studies of organic molecules in natural environments, which so far have only been accessible to all-optical transient spectroscopies. We record static and time-resolved photoelectron spectra of a sample molecule, quinoline yellow WS, analyze its electronic structure, and follow the relaxation dynamics upon excitation with 400 nm pulses.

View Article and Find Full Text PDF

The fragmentation of free tenfold protonated ubiquitin in intense 70 femtosecond pulses of 90 eV photons from the FLASH facility was investigated. Mass spectrometric investigation of the fragment cations produced after removal of many electrons revealed fragmentation predominantly into immonium ions and related ions, with yields increasing linearly with intensity. Ionization clearly triggers a localized molecular response that occurs before the excitation energy equilibrates.

View Article and Find Full Text PDF

The understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments.

View Article and Find Full Text PDF