The present work offers a comprehensive overview of methods related to condition assessment of bridges through Structural Health Monitoring (SHM) procedures, with a particular interest on aspects of seismic assessment. Established techniques pertaining to different levels of the SHM hierarchy, reflecting increasing detail and complexity, are first outlined. A significant portion of this review work is then devoted to the overview of computational intelligence schemes across various aspects of bridge condition assessment, including sensor placement and health tracking.
View Article and Find Full Text PDFFor slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior.
View Article and Find Full Text PDFThe present paper deals with the multiple scattering by randomly distributed elastodynamic systems at the surface of a horizontally layered elastic halfspace due to an incident plane wave. Instead of solving this problem for a particular configuration of the system, multiple scattering theory is used to compute the ensemble response statistics. The Dyson equation is used to calculate the mean field, while the nonstationary second order statistics are obtained by means of the Bethe-Salpeter equation.
View Article and Find Full Text PDF