Until quite recently, Conceptual DFT (CDFT) was mainly based on the energy functional, [,], where the number of electrons and the external potential are state variables. One of the strengths of CDFT, however, is the ease with which additional and/or different state variables can be incorporated. Here, the incorporation of new variables-namely temperature and external fields-is discussed, outlining the motivation for these extensions, sketching their theoretical/computational context, and presenting some elucidative examples.
View Article and Find Full Text PDFConceptual Density Functional Theory (CDFT) has been extended beyond its traditional role in elucidating chemical reactivity to the development of density functional theory methods, e.g., the investigation of the delocalization error.
View Article and Find Full Text PDFWhile high-pressure chemistry has a well-established history, methods to simulate pressure at the single-molecule level have been somewhat lacking. The current work aims at comparing two static models (XP-PCM and GOSTSHYP) to apply isotropic pressure to single molecules, focusing on the equilibrium bond length and electric dipole moment of diatomic molecules. Numerical challenges arising in the potential energy surface using the XP-PCM method were examined, and a pragmatic approach was followed to mitigate these.
View Article and Find Full Text PDFThe extension of conceptual density-functional theory (conceptual DFT) to include external electromagnetic fields in chemical systems is utilised to investigate the effects of strong magnetic fields on the electronic charge distribution and its consequences on the reactivity of π-systems. Formaldehyde, HCO, is considered as a prototypical example and current-density-functional theory (current-DFT) calculations are used to evaluate the electric dipole moment together with two principal local conceptual DFT descriptors, the electron density and the Fukui functions, which provide insight into how HCO behaves chemically in a magnetic field. In particular, the symmetry properties of these quantities are analysed on the basis of group, representation, and corepresentation theories using a recently developed automatic program for symbolic symmetry analysis, QSYM.
View Article and Find Full Text PDFBackground & Aim: In hospitalized patients, daily protein intake remains far below WHO requirements for healthy adults (0.8 g·kg·d) as well as ESPEN guidelines for patients (1.2-1.
View Article and Find Full Text PDFA combined computational and interpretational DFT study is performed to investigate the regioselectivity of B and B leapfrog boron sheets upon reaction with XH-type electrophiles and nucleophiles (X = N, P, As, B, Al). The M062X, B3LYP, and B3LYP-D3 functionals are used combined with the 6-31+G(d,p) basis. The molecular electrostatic potential (MEP), Fukui functions, and the dual descriptor are employed to predict the local reactivity of B and B.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2024
In the context of the growing impact of conceptual density functional theory (DFT) as one of the most successful chemical reactivity theories, response functions up to second order have now been widely applied; in recent years, among others, particular attention has been focused on the linear response function and also extensions to higher order have been put forward. As the larger part of these studies have been carried using a finite difference approach to compute these concepts, we now embarked on (an extension of) an analytical approach to conceptual DFT. With the ultimate aim of providing a complete set of analytically computable second order properties, including the softness and hardness kernels, the hardness as the simplest second order response function is scrutinized again with numerical results highlighting the difference in nature between the analytical hardness (referred to as hardness condition) and the Parr-Pearson absolute chemical hardness.
View Article and Find Full Text PDFMechanochemistry has experienced a renaissance in recent years witnessing, at the molecular level, a remarkable interplay between theory and experiment. Molecular mechanochemistry has welcomed a broad spectrum of quantum-chemical methods to evaluate the influence of an external mechanical force on molecular properties. In this contribution, an overview is given on recent work on quantum mechanochemistry in the Brussels Quantum Chemistry group (ALGC).
View Article and Find Full Text PDFIntroduction: This study aimed to evaluate the use and dose of loop diuretics (LDs) across the entire ejection fraction (EF) spectrum in a large, 'real-world' cohort of chronic heart failure (HF) patients.
Methods: A total of 10 366 patients with chronic HF from 34 Dutch outpatient HF clinics were analysed regarding diuretic use and diuretic dose. Data regarding daily diuretic dose were stratified by furosemide dose equivalent (FDE)>80 mg or ≤80 mg.
The linear response kernel also referred to as linear response function (LRF) in the framework of conceptual density functional theory has gained tremendous success in time-dependent density functional theory. Comparatively less attention has been devoted to the LRF from a chemical reactivity perspective in its time- or frequency-independent context, although it has recently been used to qualitatively describe electron delocalization, (anti-)aromaticity, inductive and mesomeric effects, etc. Despite these successes, which were obtained by approximating the LRF using the independent particle approximation deriving from a coupled-perturbed Kohn-Sham computation, the robustness of this LRF approach needs to be assessed.
View Article and Find Full Text PDFBackground: The aim of this study was to assess heart failure (HF) treatment in patients with and without obesity in a large contemporary real-world Western European cohort.
Methods: Patients with a left ventricular ejection fraction (LVEF) <50% and available information on body mass index (BMI) were selected from the CHECK-HF registry. The CHECK-HF registry included chronic HF patients in the period between 2013 and 2016 in 34 Dutch outpatient clinics.
Anti-Felkin-Anh diastereoselectivity can be achieved for nucleophilic additions to α-chiral ketones upon stretching the ketone with a mechanical pulling force. Herein, a mechanochemical Felkin-Anh model is proposed for predicting the outcome of a nucleophilic addition to an α-chiral ketone. Essentially, the fully stretched chiral ketone has one substituent shielding each side of the carbonyl, in contrast to the Felkin-Anh model, in which free rotation around a bond is required to achieve the two rotamers of the ketone.
View Article and Find Full Text PDFIn this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2022
The position of conceptual density functional theory (CDFT) in the history of density functional theory (DFT) is sketched followed by a chronological report on the introduction of the various DFT descriptors such as the electronegativity, hardness, softness, Fukui function, local version of softness and hardness, dual descriptor, linear response function, and softness kernel. Through a perturbational approach they can all be characterized as response functions, reflecting the intrinsic reactivity of an atom or molecule upon perturbation by a different system, including recent extensions by external fields. Derived descriptors such as the electrophilicity or generalized philicity, derived from the nature of the energy vs.
View Article and Find Full Text PDFAn overview of mathematical properties of the non-local second order derivatives of the canonical, grand canonical, isomorphic, and grand isomorphic ensembles is given. The significance of their positive or negative semidefiniteness and the implications of these properties for atoms and molecules are discussed. Based on this property, many other interesting properties can be derived, such as the expansion in eigenfunctions, bounds on the diagonal and off-diagonal elements, and the eigenvalues of these kernels.
View Article and Find Full Text PDFHigh pressure chemistry offers the chemical community a range of possibilities to control chemical reactivity, develop new materials and fine-tune chemical properties. Despite the large changes that extreme pressure brings to the table, the field has mainly been restricted to the effects of volume changes and thermodynamics with less attention devoted to electronic effects at the molecular scale. This paper combines the conceptual DFT framework for analyzing chemical reactivity with the XP-PCM method for simulating pressures in the GPa range.
View Article and Find Full Text PDFThe necessity of the recent incorporation of new external variables in the context of conceptual DFT (CDFT) is discussed based on the ever-increasing portfolio of experimental reaction conditions in the endeavor of experimentalists to synthesize new molecules with unprecedented properties. Electric and magnetic fields (ε and B), mechanical forces (F), and confinement are proposed as valuable new variables, extending conventional CDFT and its associated response functions. A finite field approach is used to calculate the evolution of both global and local descriptors in a selected series of atomic and molecular applications, and from it derive new response function involving, with one exception, the first derivative to the field considered.
View Article and Find Full Text PDFAn extension of conceptual DFT to include the influence of an external magnetic field is proposed in the context of a program set up to cope with the ever increasing variability of reaction conditions and concomitant reactivity. The two simplest global reactivity descriptors, the electronic chemical potential () and the hardness (), are considered for the main group atoms H-Kr using current density-functional theory. The magnetic field strength, ||, is varied between 0.
View Article and Find Full Text PDFLinear triatomic molecules (CO, NO, and OCS) are scrutinized for their propensity to form perpendicular tetrel (CO and OCS) or pnictogen (NO) bonds with Lewis bases (dimethyl ether and trimethyl amine) as compared with their tendency to form end-on chalcogen bonds. Comparison of the IR spectra of the complexes with the corresponding monomers in cryogenic solutions in liquid argon enables to determine the stoichiometry and the nature of the complexes. In the present cases, perpendicular tetrel and pnictogen 1:1 complexes are identified mainly on the basis of the lifting of the degenerate ν 2 bending mode with the appearance of both a blue and a red shift.
View Article and Find Full Text PDFThe conjugated π-system in polyenes can be interrupted by electrocyclic ring-closure reactions. In this work, this 6π-electrocylization is shown by means of density functional calculations to be reversible by the application of an external mechanical pulling force at the terminal ends of the interrupted polyene chain. The test systems were constrained in a fused ring system, thus locking the orientation of three π-bonds and generally promoting 6π-electrocyclic ring-closure reactions.
View Article and Find Full Text PDFAims: Previous research has shown the possibility to use the pre-operative period to improve a patient's tolerance for surgery. However, there is limited experience with prehabilitation in cardiac surgery. The aim of this study is to evaluate the effect of a comprehensive personalized teleprehabilitation programme on major adverse cardiac events (MACE) in patients scheduled for elective cardiac surgery.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2021
The extension of the E = E[N, v] functional for exploring chemical reactivity in a conceptual DFT context to include external electric fields is discussed. Concentrating on the case of a homogeneous field the corresponding response functions are identified and integrated, together with the conventional response functions such as permanent dipole moment and polarizability, in an extended response function tree associated with the E = E[N, v, ε] functional. In a case study on the dihalogens F2, Cl2, Br2, I2 the sensitivity of condensed atomic charges (∂q/∂ε) is linked to the polarizability of the halogen atoms.
View Article and Find Full Text PDFA hitherto unexplored class of molecules for molecular force probe applications are expanded porphyrins. This work proves that mechanical force is an effective stimulus to trigger the interconversion between Hückel and Möbius topologies in [28]hexaphyrin, making these expanded porphyrins suitable to act as conformational mechanophores operating at mild (sub-1 nN) force conditions. A straightforward approach based on distance matrices is proposed for the selection of pulling scenarios that promote either the planar Hückel topology or the three lowest lying Möbius topologies.
View Article and Find Full Text PDF