Interactions between cancer cells and immune cells in the tumor microenvironment influence tumor growth and can contribute to the response to cancer immunotherapies. It is difficult to gain mechanistic insights into the effects of cell-cell interactions in tumors using a purely experimental approach. However, computational modeling enables quantitative investigation of the tumor microenvironment, and agent-based modeling, in particular, provides relevant biological insights into the spatial and temporal evolution of tumors.
View Article and Find Full Text PDFMathematical models of biomolecular networks are commonly used to study cellular processes; however, their usefulness to explain and predict dynamic behaviors is often questioned due to the unclear relationship between parameter uncertainty and network dynamics. In this work, we introduce PyDyNo (Python dynamic analysis of biochemical networks), a non-equilibrium reaction-flux based analysis to identify dominant reaction paths within a biochemical reaction network calibrated to experimental data. We first show, in a simplified apoptosis execution model, that despite the thousands of parameter vectors with equally good fits to experimental data, our framework identifies the dynamic differences between these parameter sets and outputs three dominant execution modes, which exhibit varying sensitivity to perturbations.
View Article and Find Full Text PDFT cells play a key role in a variety of immune responses, including infection and cancer. Upon stimulation, naïve CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types; however, failure to clear antigens causes prolonged stimulation of CD8+ T cells, ultimately leading to T cell exhaustion (TCE). The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the underlying gene expression state changes are not completely understood.
View Article and Find Full Text PDFNecroptosis is a form of regulated cell death associated with degenerative disorders, autoimmune and inflammatory diseases, and cancer. To better understand the biochemical mechanisms regulating necroptosis, we constructed a detailed computational model of tumor necrosis factor-induced necroptosis based on known molecular interactions from the literature. Intracellular protein levels, used as model inputs, were quantified using label-free mass spectrometry, and the model was calibrated using Bayesian parameter inference to experimental protein time course data from a well-established necroptosis-executing cell line.
View Article and Find Full Text PDFSmall cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory.
View Article and Find Full Text PDF