Functional magnetic resonance imaging (fMRI) studies have identified a network of face-selective regions distributed across the human brain. In the present study, we analyzed data from a large group of gender-balanced participants to investigate how reliably these face-selective regions could be identified across both cerebral hemispheres. Participants ( =52) were scanned with fMRI while viewing short videos of faces, bodies, and objects.
View Article and Find Full Text PDFHumans process faces by using a network of face-selective regions distributed across the brain. Neuropsychological patient studies demonstrate that focal damage to nodes in this network can impair face recognition, but such patients are rare. We approximated the effects of damage to the face network in neurologically normal human participants by using theta burst transcranial magnetic stimulation (TBS).
View Article and Find Full Text PDFThe human brain contains areas that respond selectively to faces, bodies and scenes. Neuroimaging studies have shown that a subset of these areas preferentially respond more to moving than static stimuli, but the reasons for this functional dissociation remain unclear. In the present study, we simultaneously mapped the responses to motion in face-, body- and scene-selective areas in the right hemisphere using moving and static stimuli.
View Article and Find Full Text PDFDespite the prevalent and natural use of metaphor in everyday language, the neural basis of this powerful communication device remains poorly understood. Early studies of brain-injured patients suggested the right hemisphere plays a critical role in metaphor comprehension, but more recent patient and neuroimaging studies do not consistently support this hypothesis. One explanation for this discrepancy is the challenge in designing optimal tasks for brain-injured populations.
View Article and Find Full Text PDFMaps, graphs, and diagrams use simplified graphic forms, like lines and blobs, to represent basic spatial relations, like boundaries and enclosures. A schema is an iconic representation where perceptual detail has been abstracted away from reality in order to provide a more flexible structure for cognition. Unlike truly symbolic representations of spatial relations (i.
View Article and Find Full Text PDFMany recent neuroimaging studies have investigated the representation of semantic memory for actions in the brain. We used activation likelihood estimation (ALE) meta-analyses to answer two outstanding questions about the neural basis of action concepts. First, on an "embodied" view of semantic memory, evidence to date is unclear regarding whether visual motion or motor systems are more consistently engaged by action concepts.
View Article and Find Full Text PDF