Publications by authors named "Gee-Ann Toh"

In 2020-2021, a "mysterious illness" struck Senegalese fishermen, causing severe acute dermatitis in over one thousand individuals following exposure through drift-net fishing activity. Here, by performing deep analysis of the environmental samples we reveal the presence of the marine dinoflagellate Vulcanodinium rugosum and its associated cyclic imine toxins. Specifically, we show that the toxin PortimineA, strongly enriched in environmental samples, impedes ribosome function in human keratinocytes, which subsequently activates the stress kinases ZAKα and P38 and promotes the nucleation of the human NLRP1 inflammasome, leading to the release of IL-1β/IL-18 pro-inflammatory cytokines and cell death.

View Article and Find Full Text PDF

Solar UVB light causes damage to the outermost layer of skin. This insult induces rapid local responses, such as dermal inflammation, keratinocyte cell death, and epidermal thickening, all of which have traditionally been associated with DNA damage response signaling. Another stress response that is activated by UVB light is the ribotoxic stress response (RSR), which depends on the ribosome-associated mitogen-activated protein 3 kinases (MAP3K) ZAKα and culminates in p38 and JNK activation.

View Article and Find Full Text PDF

Nigericin, an ionophore derived from , is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation.

View Article and Find Full Text PDF

The ZAKα-driven ribotoxic stress response (RSR) is activated by ribosome stalling and/or collisions. Recent work demonstrates that RSR also plays a role in innate immunity by activating the human NLRP1 inflammasome. Here, we report that ZAKα and NLRP1 sense bacterial exotoxins that target ribosome elongation factors.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a specific part of our immune system, called the NLRP1 inflammasome, can detect a harmful substance called exotoxin A produced by a bacterium named Pseudomonas aeruginosa, which can cause chronic infections.
  • This exotoxin attacks a protein in our cells, leading to stress and activating the NLRP1 inflammasome, which can cause further cell damage.
  • In people with cystic fibrosis, the cells were more sensitive to this exotoxin, showing increased damage, but using certain inhibitors could help reduce this sensitivity.
View Article and Find Full Text PDF
Article Synopsis
  • Nucleotide-binding oligomerization domain (NLR) proteins are key players in the body's immune response to infections, particularly in endothelial cells (ECs) that act as a barrier against pathogens in the bloodstream.
  • Research shows that human ECs can activate both NLRP1 and CARD8 inflammasomes in response to a specific inhibitor (VbP) and that the Coxsackie virus B3 (CVB3) primarily activates CARD8, which is crucial for triggering inflammation and cell death.
  • Deleting CARD8 from ECs and human heart cells significantly reduces CVB3-induced inflammation and virus spread, highlighting CARD8's important role in the endothelial immune response against viral infections.
View Article and Find Full Text PDF

Human NLRP1 (NACHT, LRR, and PYD domain-containing protein 1) is an innate immune sensor predominantly expressed in the skin and airway epithelium. Here, we report that human NLRP1 senses the ultraviolet B (UVB)- and toxin-induced ribotoxic stress response (RSR). Biochemically, RSR leads to the direct hyperphosphorylation of a human-specific disordered linker region of NLRP1 (NLRP1) by MAP3K20/ZAKα kinase and its downstream effector, p38.

View Article and Find Full Text PDF

Nucleotide-binding domain, leucine-rich repeat receptors (NLRs) mediate innate immunity by forming inflammasomes. Activation of the NLR protein NLRP1 requires autocleavage within its function-to-find domain (FIIND). In resting cells, the dipeptidyl peptidases DPP8 and DPP9 interact with the FIIND of NLRP1 and suppress spontaneous NLRP1 activation; however, the mechanisms through which this occurs remain unknown.

View Article and Find Full Text PDF

Immune sensor proteins are critical to the function of the human innate immune system. The full repertoire of cognate triggers for human immune sensors is not fully understood. Here, we report that human NACHT, LRR, and PYD domains-containing protein 1 (NLRP1) is activated by 3C proteases (3Cpros) of enteroviruses, such as human rhinovirus (HRV).

View Article and Find Full Text PDF