Publications by authors named "Gee Sung Chae"

Flexible and foldable thin-film transistors (TFTs) have been widely studied with the objective of achieving high-performance and low-cost flexible TFTs for next-generation displays. In this study, we introduced the fabrication of foldable TFT devices with excellent mechanical stability, high transparency, and high performance by a fully solution process including PI, YOx, In2O3, SWCNTs, IL-PVP, and Ag NWs. The fabricated fully solution-processed TFTs showed a higher transmittance above 86% in the visible range.

View Article and Find Full Text PDF

New host molecules such as 9-(6-(9H-carbazol-9-yl)pyridin-3-yl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (pPCB2CZ) and 9-(6-(9H-carbazol-9-yl)pyridin-2-yl)-6-(9H-carbazol-9-yl)-9H-pyrido[2,3-b]indole (mPCB2CZ) were designed and synthesized for blue phosphorescent organic light-emitting diodes (PhOLEDs). The glass transition temperatures of two host molecules were measured higher than 120 °C, and the identical triplet energies were determined to be 2.92 eV for both molecules.

View Article and Find Full Text PDF

A novel bipolar host 9-(4-(9H-pyrido[2,3-b]indol-9-yl)phenyl)-9H-3,9'-bicarbazole (pBCb2Cz) was prepared for high efficiency blue phosphorescent organic light-emitting diodes (PhOLEDs), a high triplet energy (ET) material, employing electron-deficient α-carboline. pBCb2Cz (ET = 2.93 eV) was effective as a host material for FIrpic- and FCNIrpic-based blue PhOLEDs, and highest quantum efficiencies of 23.

View Article and Find Full Text PDF

We report photoluminescence (PL) modulation of quantum dots (QDs) by photoinduced electron transfers from acridine-1,8-dione derivative surface ligands. Reversible PL switching upon many repeated cycles was demonstrated, as alternating on and off of the UV excitation for the surface ligand has successfully resulted in the QD PL modulation.

View Article and Find Full Text PDF

A facile and quick approach to prepare self-assembled monolayers of water-dispersible particles on the water surface is presented. Particle suspensions in alcohols were dropped on a water reservoir to form long-range ordered monolayers of various particles, including spherical solid particles, soft hydrogel particles, metal nanoparticles, quantum dots, nanowires, single-wall carbon nanotubes (SWCNTs), nanoplates, and nanosheets. A systematic study was conducted on the variables affecting the monolayer assembly: the solubility parameter of spreading solvents, particle concentration, zeta potential of the particles in the suspension, surface tension of the water phase, hardness of the particles, and addition of a salt in the suspension.

View Article and Find Full Text PDF