: Subarachnoid Hemorrhage (SAH) is a serious neurological emergency case with a higher mortality rate. An automatic SAH detection is needed to expedite and improve identification, aiding timely and efficient treatment pathways. The existence of noisy and dissimilar anatomical structures in NCCT images, limited availability of labeled SAH data, and ineffective training causes the issues of irrelevant features, overfitting, and vanishing gradient issues that make SAH detection a challenging task.
View Article and Find Full Text PDFBackground: The pathological mechanisms following aneurysmal subarachnoid hemorrhage (SAH) are poorly understood. Limited clinical evidence exists on the association between cerebrospinal fluid (CSF) volume and the risk of delayed cerebral ischemia (DCI) or cerebral vasospasm (CV). In this study, we raised the hypothesis that the amount of CSF or its ratio to hemorrhage blood volume, as determined from non-contrast Computed Tomography (NCCT) images taken on admission, could be a significant predictor for CV and DCI.
View Article and Find Full Text PDFA simplified model of Covid-19 epidemic dynamics under quarantine conditions and method to estimate quarantine effectiveness are developed. The model is based on the daily growth rate of new infections when total number of infections is significantly smaller than population size of infected country or region. The model is developed on the basis of collected epidemiological data of Covid19 pandemic, which shows that the daily growth rate of new infections has tendency to decrease linearly when the quarantine is imposed in a country (or a region) until it reaches a constant value, which corresponds to the effectiveness of quarantine measures taken in the country.
View Article and Find Full Text PDF