Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.
View Article and Find Full Text PDFOrganic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix.
View Article and Find Full Text PDFHybrid lead halide perovskite solar cells (PSCs) have emerged as potential competitors to silicon-based solar cells with an unprecedented increase in power conversion efficiency (PCE), nearing the breakthrough point toward commercialization. However, for hole-transporting materials, it is generally acknowledged that complex structures often create issues such as increased costs and hazardous substances in the synthetic schemes, when translated from the laboratory to manufacture on a large scale. Here, we present cyclobutane-based hole-selective materials synthesized using simple and green-chemistry inspired protocols in order to reduce costs and adverse environmental impact.
View Article and Find Full Text PDFThe successful development of thermally activated delayed fluorescence (TADF) OLEDs relies on advances in molecular design. To guide the molecular design toward compounds with preferable properties, special care should be taken while estimating the parameters of prompt and delayed fluorescence. Mistakes made in the initial steps of analysis may lead to completely misleading conclusions.
View Article and Find Full Text PDFPerovskite light converting layers optimization for cost-efficient white light emitting diodes (LED) was demonstrated. High excitation independent internal quantum efficiency (IQE) of 80% and weakly excitation dependent PL spectra suitable for white light generation were obtained in the mixed cation CsMAPbBr perovskite nanocrystal layers with optimal x = 0.3 being determined by effective surface passivation and phase mixing as revealed by x-ray diffraction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2018
Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs.
View Article and Find Full Text PDFSeven new derivatives of phenanthro[9,10-d]imidazole having differenet substituents at the 1st and the 2nd positions of the phenanthroimidazole moiety were synthesized and characterized. The comparative study of their properties was performed employing thermal, optical, electrochemical and photoelectrical measurements. The properties of the newly synthesized compounds were compared with those of earlier reported derivatives of phenanthroimidazole and several interesting new findings were disclosed.
View Article and Find Full Text PDFDeep-blue-emitting benzo[c]fluorene-cored compounds featuring twisted peripheral moieties for suppressed concentration quenching of emission were synthesized and investigated as potential materials for light amplification. This detailed study of the effect of concentration on the spontaneous and stimulated emission, excited-state lifetime and susceptibility to form aggregates obtained for different benzofluorenes, has enabled the understanding of the concentration dependence of the amplified spontaneous emission (ASE) threshold and revealed the optimal concentration for the lowest threshold. The weak concentration quenching accompanied by high fluorescence quantum yield (>40%) and radiative decay rate (>5 × 10(8) s(-1)) have enabled the attainment of the lowest ASE threshold in the neat amorphous film of benzofluorene bearing dihexylfluorenyl peripheral moieties.
View Article and Find Full Text PDF