Background: Weeds are a serious problem in worldwide agricultural production. Natural products are a notable source for discovering new lead compounds. Phloretin is a dihydrochalcone compound which was discovered in 1835 and named after its concentrated content in roots, stems or bark of fruits.
View Article and Find Full Text PDFDrug discovery is essential in human diseases but faces challenges because of the vast chemical space. Molecular generation models have become powerful tools to accelerate drug design by efficiently exploring chemical space. 3D molecular generation has gained popularity for explicitly incorporating spatial structural information to generate rational molecules.
View Article and Find Full Text PDFActa Pharm Sin B
October 2024
Proteolysis targeting chimera (PROTAC) technology represents a groundbreaking development in drug discovery, leveraging the ubiquitin‒proteasome system to specifically degrade proteins responsible for the disease. PROTAC is characterized by its unique heterobifunctional structure, which comprises two functional domains connected by a linker. The linker plays a pivotal role in determining PROTAC's biodegradative efficacy.
View Article and Find Full Text PDFAccurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare.
View Article and Find Full Text PDFAbscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination.
View Article and Find Full Text PDFDrug Resist Updat
November 2024
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms.
View Article and Find Full Text PDFGlobally, 91% of plant production encounters diverse environmental stresses that adversely affect their growth, leading to severe yield losses of 50-60%. In this case, monitoring the connection between the environment and plant health can balance population demands with environmental protection and resource distribution. Fluorescent chemosensors have shown great progress in monitoring the health and environment of plants due to their high sensitivity and biocompatibility.
View Article and Find Full Text PDFDrug discovery often begins with a new target. Protein-protein interactions (PPIs) are crucial to multitudinous cellular processes and offer a promising avenue for drug-target discovery. PPIs are characterized by multi-level complexity: at the protein level, interaction networks can be used to identify potential targets, whereas at the residue level, the details of the interactions of individual PPIs can be used to examine a target's druggability.
View Article and Find Full Text PDFFungal infections are a major threat to human health. The limited availability of antifungal drugs, the emergence of drug resistance, and a growing susceptible population highlight the critical need for novel antifungal agents. The enzymes involved in fungal cell wall synthesis offer potential targets for antifungal drug development.
View Article and Find Full Text PDFDrug Discov Today
April 2024
Accurate assessment of pharmacokinetic (PK) properties is crucial for selecting optimal candidates and avoiding downstream failures. Transfer learning is an innovative machine learning approach enabling high-throughput prediction with limited data. Recently, transfer learning methods showed promise in predicting ADME/PK parameters.
View Article and Find Full Text PDFTo discover protoporphyrinogen oxidase (PPO) inhibitors with robust herbicidal activity and crop safety, three types of substituted 3-(pyridin-2-yl)phenylamino derivatives bearing amide, urea, or thiourea as side chain were designed via structure splicing strategy. Postemergence herbicidal activity assessment of 33 newly prepared compounds revealed that many of our compounds such as , , and exhibited superior herbicidal activities against broadleaf and monocotyledon weeds to commercial acifluorfen. In particular, compound exhibited excellent herbicidal activities and high crop safety at a dosage range of 37.
View Article and Find Full Text PDFPlant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers.
View Article and Find Full Text PDFHerein, we report an unprecedented skeletal rearrangement reaction of tetrahydro-β-carbolines enabled by copper-catalyzed single-electron oxidative oxygenation, in which H O and O act as oxygen sources to generate a unique 2-hydroxyl-3-peroxide indoline intermediate. The synthetic reactivity of 2-hydroxyl-3-peroxide indoline species was demonstrated by a unique multi-step bond cleavage and formation cascade. Using a readily available copper catalyst under open-air conditions, highly important yet synthetically difficult spiro[pyrrolidone-(3,1-benzoxazine)] products were obtained in a single operation.
View Article and Find Full Text PDFPesticides are indispensable to maintain crop quality and food production worldwide, but their use also poses environmental risks. Pesticide risk assessment involves a series of complex, expensive and time-consuming toxicity tests. To improve the efficiency and accuracy for assessing the environmental impact of pesticides, numerous computational tools have been developed.
View Article and Find Full Text PDFPlant phenotyping is important for plants to cope with environmental changes and ensure plant health. Imaging techniques are perceived as the most critical and reliable tools for studying plant phenotypes. Thermal imaging has opened up new opportunities for nondestructive imaging of plant phenotyping.
View Article and Find Full Text PDFDrug Discov Today
September 2023
Drug resistance is a significant obstacle to successful cancer treatment. The utilization and development of cryptic binding sites (CBSs) in proteins involved in cancer-related drug-resistance (CRDR) could help to overcome that drug resistance. However, there is no comprehensive review of the successful use of CBSs in addressing CRDR.
View Article and Find Full Text PDFDrug resistance causes catastrophic cancer treatment failures. Mutations in target proteins with altered drug binding indicate a main mechanism of cancer drug resistance (CDR). Global research has generated considerable CDR-related data and well-established knowledge bases and predictive tools.
View Article and Find Full Text PDFReactive oxygen species (ROS) play an essential role as both signaling molecule and damage agent during salt stress. As a signaling molecule, proper accumulation of HO is crucial to trigger stress response and enhance stress tolerance. However, the dynamic regulation mechanism of HO remains unclear.
View Article and Find Full Text PDFDrug discovery, which plays a vital role in maintaining human health, is a persistent challenge. Fragment-based drug discovery (FBDD) is one of the strategies for the discovery of novel candidate compounds. Computational tools in FBDD could help to identify potential drug leads in a cost-efficient and time-saving manner.
View Article and Find Full Text PDFIn response to Gromiha and Harini, we review the currently available thermodynamic databases for protein-nucleic acid interactions. These databases are designed for particular uses. We give general comments on them to facilitate browsing and exploration.
View Article and Find Full Text PDFAs major forces for modulating protein folding and molecular recognition, cation and π interactions are extensively identified in protein structures. They are even more competitive than hydrogen bonds in molecular recognition, thus, are vital in numerous biological processes. In this review, we introduce the methods for the identification and quantification of cation and π interactions, provide insights into the characteristics of cation and π interactions in the natural state, and reveal their biological function together with our developed database (Cation and π Interaction in Protein Data Bank; CIPDB; http://chemyang.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as 'undruggable' therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development.
View Article and Find Full Text PDF