Publications by authors named "Ge Xia"

Diabetic cognitive impairment pose a significant threat to public health in our aging society. However, the underlying molecular mechanisms have not been fully elucidated, which warrants further investigation. This study aimed to investigate the effects of electroacupuncture on cognitive impairment and its associated mechanisms.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis (MPS) IIIB, also known as Sanfilippo Syndrome B, is a devastating childhood disease. Unfortunately, there are currently no available treatments for MPS IIIB patients. Yet, animal models of lysosomal storage diseases have been valuable tools in identifying promising avenues of treatment.

View Article and Find Full Text PDF

Objectives: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI.

Methods: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin.

View Article and Find Full Text PDF

Despite six decades of the use of exogenous oxytocin for management of labor, little is known about its effects on the developing brain. Motivated by controversial reports suggesting a link between oxytocin use during labor and autism spectrum disorders (ASDs), we employed our recently validated rat model for labor induction with oxytocin to address this important concern. Using a combination of molecular biological, behavioral, and neuroimaging assays, we show that induced birth with oxytocin leads to sex-specific disruption of oxytocinergic signaling in the developing brain, decreased communicative ability of pups, reduced empathy-like behaviors especially in male offspring, and widespread sex-dependent changes in functional cortical connectivity.

View Article and Find Full Text PDF

Sprouting is an irreversible deterioration of potato quality, which leads to the production of harmful toxins and loss of the commercial value of potatoes. However, there is no report on the changes in different stages of potato sprouting through transcriptome and metabonomics. In this study, 1471 differentially expressed genes (DEGs) were found between DP and BP.

View Article and Find Full Text PDF

Aquaporin-4 (AQP4) is a water channel protein that links the astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, which preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel AQP4 mouse line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wild-type (WT) mice.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving nursing care for patients undergoing complex coronary chronic total occlusion (CTO) interventions using a checklist-based approach, as traditional methods have been ineffective.
  • It involved 120 CTO patients split into two groups: one receiving a structured checklist for nursing care and the other following standard nursing practices, measuring outcomes like care duration, patient anxiety, satisfaction, and adverse events.
  • Results indicated that the checklist-based nursing process could lead to better patient outcomes, reduced anxiety, and increased satisfaction compared to conventional methods.
View Article and Find Full Text PDF

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3a mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation.

View Article and Find Full Text PDF

Purpose: Tail-vein catheterization and subsequent in-magnet infusion is a common route of administration of deuterium ( H)-labeled substrates in small-animal deuterium (D) MR studies. With mice, because of the tail vein's small diameter, this procedure is challenging. It requires considerable personnel training and practice, is prone to failure, and may preclude serial studies.

View Article and Find Full Text PDF

Objective: Thyroid cancer is the third most prevalent cancer among females. Genetic testing based on next-generation sequencing may provide an auxiliary diagnosis to reduce cytologically diagnostic uncertainty. However, commercial multigene tests are not widely available and are not well-tested in the Chinese population.

View Article and Find Full Text PDF

Aquaporin-4 (AQP4) is a water channel protein that links astrocytic endfeet to the blood-brain barrier (BBB) and regulates water and potassium homeostasis in the brain, as well as the glymphatic clearance of waste products that would otherwise potentiate neurological diseases. Recently, translational readthrough was shown to generate a C-terminally extended variant of AQP4, known as AQP4x, that preferentially localizes around the BBB through interaction with the scaffolding protein α-syntrophin, and loss of AQP4x disrupts waste clearance from the brain. To investigate the function of AQP4x, we generated a novel mouse AQP4 line (AllX) to increase relative levels of the readthrough variant above the ~15% of AQP4 in the brain of wildtype (WT) mice.

View Article and Find Full Text PDF

Purpose: Distinguishing recurrent brain tumor from treatment effects, including late time-to-onset radiation necrosis (RN), presents an on-going challenge in post-treatment imaging of neuro-oncology patients. Experiments were performed in a novel mouse model that recapitulates the relevant clinical histologic features of recurrent glioblastoma growing in a RN environment, the mixed tumor/RN model. The goal of this work was to apply single-voxel deuterium (H) magnetic resonance spectroscopy (MRS), in concert with administration of deuterated glucose, to determine if the metabolic signature of aerobic glycolysis (Warburg effect: glucose → lactate in the presence of O), a distinguishing characteristic of proliferating tumor, provides a quantitative readout of the tumor fraction (percent) in a mixed tumor/RN lesion.

View Article and Find Full Text PDF

Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation.

View Article and Find Full Text PDF

Diabetes is a complex metabolic disease. In recent years, diabetes and its chronic complications have become a health hotspot of global concern. It is very important to find promising therapeutic targets and directions.

View Article and Find Full Text PDF

Background: Diabetes-associated cognitive dysfunction has become a major public health concern. However, the mechanisms driving this disease are elusive. Herein, we explored how electroacupuncture improves learning and memory function in diabetic rats.

View Article and Find Full Text PDF

Objective: To investigate the effect of moxibustion on autophagy and amyloid β-peptide (Aβ) protein expression in amyloid precursor protein/presenilin 1 (APP/PS1) double-transgenic mice with Alzheimer's disease (AD).

Methods: After 2-month adaptive feeding, fifty-six 6-month-old APP/PS1 double transgenic AD mice were randomly divided into a model group, a moxibustion group, a rapamycin group and an inhibitor group, 14 mice in each group. Another 14 C57BL/6J mice with the same age were used as a normal group.

View Article and Find Full Text PDF

Diabetes is a common metabolic disease whose hyperglycemic state can induce diverse complications and even threaten human health and life security. Currently, the treatment of diabetes is restricted to drugs that regulate blood glucose and have certain accompanying side effects. Autophagy, a research hotspot, has been proven to be involved in the occurrence and progression of the chronic complications of diabetes.

View Article and Find Full Text PDF

Alzheimer's disease is initiated by the toxic aggregation of amyloid-β. Immunotherapeutics aimed at reducing amyloid beta are in clinical trials but with very limited success to date. Identification of orthogonal approaches for clearing amyloid beta may complement these approaches for treating Alzheimer's disease.

View Article and Find Full Text PDF

A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo.

View Article and Find Full Text PDF

Purpose: Distinguishing radiation necrosis (RN) from recurrent tumor remains a vexing clinical problem with important health-care consequences for neuro-oncology patients. Here, mouse models of pure tumor, pure RN, and admixed RN/tumor are employed to evaluate hydrogen (H) and deuterium (H) magnetic resonance methods for distinguishing RN vs. tumor.

View Article and Find Full Text PDF

Sprouting is an irreversible deterioration of potato quality, which not only causes loss in their commercial value but also produces harmful toxins. As a popular disinfectant, ClO can inhibit the sprouting of potato tubers. Using transcriptomic and metabolomic approaches to understand the repressive mechanism of ClO in potato sprouting is yet to be reported.

View Article and Find Full Text PDF

To elucidate the mechanisms underlying the reduced incidence of brain tumors in children with Neurofibromatosis type 1 (NF1) and asthma, we leverage Nf1 optic pathway glioma (Nf1) mice, human and mouse RNAseq data, and two different experimental asthma models. Following ovalbumin or house dust mite asthma induction at 4-6 weeks of age (WOA), Nf1 mouse optic nerve volumes and proliferation are decreased at 12 and 24 WOA, indicating no tumor development. This inhibition is accompanied by reduced expression of the microglia-produced optic glioma mitogen, Ccl5.

View Article and Find Full Text PDF

Human genetics have defined a new neurodevelopmental syndrome caused by loss-of-function mutations in MYT1L, a transcription factor known for enabling fibroblast-to-neuron conversions. However, how MYT1L mutation causes intellectual disability, autism, ADHD, obesity, and brain anomalies is unknown. Here, we developed a Myt1l haploinsufficient mouse model that develops obesity, white-matter thinning, and microcephaly, mimicking common clinical phenotypes.

View Article and Find Full Text PDF