This paper investigates the fixed-time cluster formation tracking (CFT) problem for networked perturbed robotic systems (NPRSs) under directed graph information interaction, considering parametric uncertainties, external perturbations, and actuator input deadzone. To address this complex problem, a novel hierarchical fixed-time neural adaptive control algorithm is proposed based on a hierarchical fixed-time framework and a neural adaptive control strategy. The objective of this study is to achieve accurate CFT of NPRSs within a fixed time.
View Article and Find Full Text PDFAn active-matrix electrowetting-on-dielectric (AM-EWOD) system integrates hundreds of thousands of active electrodes for sample droplet manipulation, which can enable simultaneous, automatic, and parallel on-chip biochemical reactions. A smart detection system is essential for ensuring a fully automatic workflow and online programming for the subsequent experimental steps. In this work, we demonstrated an artificial intelligence (AI)-enabled multipurpose smart detection method in an AM-EWOD system for different tasks.
View Article and Find Full Text PDFThis research delves into the challenges of achieving secure consensus tracking within multi-agent systems characterized by directed hypergraph topologies, in the face of hybrid deception attacks. The hybrid discrete and continuous deception attacks are targeted at the controller communication channels and the hyperedges, respectively. To overcome these threats, an impulsive control mechanism based on hypergraph theory are introduced, and sufficient conditions are established, under which consensus can be maintained in a mean-square bounded sense, supported by rigorous mathematical proofs.
View Article and Find Full Text PDFLong-term imaging of live cells is commonly used for the study of dynamic cell behaviors. It is crucial to keep the cell viability during the investigation of physiological and biological processes by live cell imaging. Conventional incubators that providing stable temperature, carbon dioxide (CO) concentration, and humidity are often incompatible with most imaging tools.
View Article and Find Full Text PDFFront Cell Infect Microbiol
July 2024
IEEE J Biomed Health Inform
November 2024
Cross-domain methods have been proposed to learn the domain invariant knowledge that can be transferred from the source domain to the target domain. Existing cross-domain methods attempt to minimize the distribution discrepancy of the domains. However, these methods fail to explore the domain invariant subspace due to the samples of different classes between two domains may overlap in the new subspace.
View Article and Find Full Text PDFIn piezoelectric drive, resonant drive is an important driving mode in which the external elastic force and electric drive signal are the key factors. In this paper, the effects of the coupling of external elastic force and liquid parameters with the structure on the vibrator resonance frequency and liquid drive are analyzed by numerical simulation. The fluid-structure coupling model for numerical analysis of the elastic force was established, the principle of microdroplet generation and the coupling method of the elastic force were studied, and the changes in the resonant frequency and mode induced by the changes in the liquid parameters in different cavities were analyzed.
View Article and Find Full Text PDFA method for separation of spring viraemia of carp virus (SVCV) from large-volume samples using immunomagnetic beads (IMBs) coated with a polyclonal antibody against SVCV was developed. The optimum amount of IMBs was 2 mg in 100 mL. After IMB treatment, the detection limit of SVCV in reverse transcription quantitative PCR (RT-qPCR) was 10 times the 50% tissue culture infectious dose per mL in 100-mL samples.
View Article and Find Full Text PDFWe present the design and fabrication of an on-chip FBG interrogator based on arrayed waveguide grating (AWG) technology. The spectral overlap between adjacent channels in the integrated AWG is significantly enhanced through a combination approach involving the reduction of the output waveguide spacing and an increase in the input waveguide width. As a result of these design choices, our AWG demonstrates excellent spectral consistency, with spectral cross talk exceeding 30 dB.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are important prognostic markers for cancer diagnosis and metastasis, and their detection is an important means to detect cancer metastasis. Herein, we construct a novel bifunctional electrochemical biosensor based on the PB-MXene composite films. A simple electrostatic self-assembly approach was employed to prepare a film composed of PB nanocubes on the MXene substrates.
View Article and Find Full Text PDFThis paper investigates the teleoperation problem of networked disturbed mobile manipulators (NDMMs), in which the human operator remotely controls multiple slave mobile manipulators through a master manipulator. Each individual of the slave ones consisted of a nonholonomic mobile platform and a holonomic constrained manipulator that is mounted on the nonholonomic mobile platform. The cooperative control objective of the considered teleoperation problem includes: (1) synchronizing the states of the slave manipulators to the human-controlled master one; (2) forcing the mobile platforms of the slave ones to form a user-defined formation; (3) controlling the geometric center of all the platforms to track a reference trajectory.
View Article and Find Full Text PDFExosomes derived from cancer cells have been recognized as a promising biomarker for minimally invasive liquid biopsy. Herein, a novel sandwich-type biosensor was fabricated for highly sensitive detection of exosomes. Amino-functionalized FeO nanoparticles were synthesized as a sensing interface with a large surface area and rapid enrichment capacity, while two-dimensional MXene nanosheets were used as signal amplifiers with excellent electrical properties.
View Article and Find Full Text PDFTetracyclines (TCs) prevent the growth of peptide chains and the synthesis of proteins, and they are widely used to inhibit Gram-positive and -negative bacteria. For the detection of tetracyclines in cell and , a convenient and simple detection system based on nitrogen-doped cyan carbon quantum dots (C-CQDs) was developed. C-CQDs have excellent excitation-independent properties, the best optimal excitation peak is 360 nm and the best emission peak is 480 nm.
View Article and Find Full Text PDFExosome is considered an important biomarker of liquid biopsy in early cancer screening, which can reflect the physiological and pathological status of cancer cells. Herein, we construct a novel electrochemical biosensor based on hierarchical Au nanoarray-modified 2D TiCT MXene membranes for sensitive detection of exosomes. TiCT MXene nanosheets were fabricated as the building blocks for preparing 2D membranes as the sensing platform via vacuum filtration.
View Article and Find Full Text PDFIn this paper, a flexible shape generator (FSG) is designed to achieve the divinable transformation process of the time-varying formation, and consider the FSG-based time-varying formation tracking (TVFT) problem of multiple Lagrangian agents with unknown disturbances and directed graphs. A hierarchical control algorithm is newly designed to achieve the control goal without using the prior information of the system model and bounded disturbances, and the specific implementation of the proposed hierarchical algorithms is also provided. By using the Hurwitz criterion and adaptive system theory, the sufficient conditions are derived and the stability analysis show that the formation tracking errors of the considered system are uniform ultimate bounded.
View Article and Find Full Text PDFFront Bioeng Biotechnol
June 2022
The diversity of bacteria and their ability to acquire drug resistance lead to many challenges in traditional antibacterial methods. Photothermal therapies that convert light energy into localized physical heat to kill target microorganisms do not induce resistance and provide an alternative for antibacterial treatment. However, many photothermal materials cannot specifically target bacteria, which can lead to thermal damage to normal tissues, thus seriously affecting their biological applications.
View Article and Find Full Text PDFCellular imaging using carbon dots is an important research method in several fields. Herein, green-emissive carbon quantum dots (G-CDs) with a pretty high absolute quantum yield (QY) were fabricated a one-step solvothermal method by using -phenylenediamine and concentrated hydrochloric acid. G-CDs displayed strong green fluorescence with excitation/emission peaks at 460/500 nm, and their absolute quantum yield was as high as 58.
View Article and Find Full Text PDFCisplatin-based chemotherapy is dominated in several cancers; however, insufficient therapeutic outcomes and systemic toxicity hamper their clinical applications. Controlled release of cisplatin and reducing inactivation remains an urgent challenge to overcome. Herein, diselenide-bridged mesoporous organosilica nanoparticles (MON) coated with biomimetic cancer cell membrane were tailored for coordination responsive controlled cisplatin delivery and GSH depletion to strengthen Pt-based chemotherapy.
View Article and Find Full Text PDFDesigning a transformable nanosystem with improved tumor accumulation and penetration by tuning multiple physicochemical properties remains a challenge. Here, a near-infrared (NIR) light-driven nanosystem with size and charge dual-transformation for deep tumor penetration is developed. The core-shell nanotransformer is realized by integrating diselenide-bridged mesoporous organosilica nanoparticles as a reactive oxygen species (ROS)-responsive core with an indocyanine green (ICG)-hybrid N-isopropyl acrylamide layer as a thermosensitive shell.
View Article and Find Full Text PDFMicromachines (Basel)
December 2021
This paper presents a design of a 3DOF XYZ bi-directional motion platform based on Z-shaped flexure hinges. In the presented platform, bridge-type mechanisms and Z-shaped flexure hinges are adopted to amplify its output displacement. Bi-direction motion along the X-axis and Y-axis follows the famous differential moving principle DMP, and the bi-directional motion along the Z-axis is realized by using the reverse arrangement of the Z-shaped flexure hinges along the X-axis and Y-axis.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) are metastatic tumor cells that shed into the blood from solid primary tumors, and their existence significantly increases the risk of metastasis and recurrence. The timely discovery and detection of CTCs are of considerable importance for the early diagnosis and treatment of metastasis. However, the low number of CTCs hinders their detection.
View Article and Find Full Text PDF2D materials with attractive optical properties are promising for individualized cancer immunotherapy. Isolation, capture, and release of circulating tumor cells (CTCs) are of great significance for promoting the process of early diagnosis of cancers. MXene nanosheets incorporated gelatin hydrogel offers the possibility of achieving near-infrared (NIR) light response to initiate the photothermal effect.
View Article and Find Full Text PDFIron, nitrogen-co-doped carbon quantum dots (Fe,N-CDs) were prepared via a simple one-step hydrothermal method. The quantum yield of fluorescence reached about 27.6% and the blue-emissive Fe,N-CDs had a mean size of 3.
View Article and Find Full Text PDFAmplifying the chemotherapy-driven immunogenic cell death (ICD) for efficient and safe cancer chemoimmunotherapy remains a challenge. Here, a potential ICD nanoamplifier containing diselenide-bridged mesoporous organosilica nanoparticles (MONs) and chemotherapeutic ruthenium compound (KP1339) to achieve cancer chemoimmunotherapy is tailored. KP1339-loaded MONs show controlled drug release profiles via glutathione (GSH)-responsive competitive coordination and matrix degradation.
View Article and Find Full Text PDFTwo-dimensional (2D) MXenes have shown a great potential for chemical sensing due to their electric properties. In this work, a TiCT/polypyrrole (MXene/PPy) nanocomposite has been synthesized and immobilized into a glassy carbon electrode to enable the simultaneous recognition of dopamine (DA) and uric acid (UA) under the interference of ascorbic acid (AA). The multilayer TiCT MXene was prepared via the aqueous acid etching method and delaminated to a single layer nanosheet, benefiting the in-situ growth of PPy nanowires.
View Article and Find Full Text PDF