Background: Serine proteinase inhibitors, clade B, member 3 (SerpinB3) and B4 are highly similar in amino acid sequences and associated with inflammation regulation. We investigated SerpinB3 and B4 expression and their roles in chronic rhinosinusitis with nasal polyps (CRSwNP).
Methods: The expression of SerpinB3 and B4 in nasal mucosa tissues, brush cells, and secretions from CRSwNP patients was measured, and their regulation by inflammatory cytokines were investigated.
Background: It has been known that chronic rhinosinusitis with nasal polyps (CRSwNP) is a type 2 inflammation-dominated disease; however, the reasons causing such type of mucosal inflammation in CRSwNP are not well elucidated.
Objective: We sought to investigate the role of microRNA-21-5p (miR-21-5p) in regulating mucosal type 2 inflammation in CRSwNP.
Methods: miR-21-5p expression was detected in nasal mucosa of patients with CRSwNP.
Purpose: MicroRNA-21 (miR-21) is a well-known oncomiR and plays key roles in regulating various biological processes related to pulmonary diseases, especially lung carcinoma. The regulatory roles and downstream targets of miR-21 remain far from well understood. We aimed to identify miR-21-gene regulatory network in lung tissue.
View Article and Find Full Text PDFBackground: The precise mechanisms underlying pathogenesis of different subtypes of chronic rhinosinusitis with nasal polyps (CRSwNP) are still unclear. Emerging evidence indicates that microRNAs may play a role in the pathogenesis of CRSwNP. This study aimed to identify the dysregulated microRNA-messenger RNA (miRNA-mRNA) regulatory networks in eosinophilic (E) and non-eosinophilic (non-E) CRSwNP.
View Article and Find Full Text PDFIntroduction: Antimicrobial peptides and proteins (AMPs) constitute the first line of defense against pathogenic microorganisms in the airway. The association between AMPs and chronic rhinosinusitis with nasal polyps (CRSwNP) requires further investigations. This study is aimed at investigating the expression and regulation of major dysregulated AMPs in the nasal mucosa of CRSwNP.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factors, ACE2 and TMPRSS2, are highly expressed in nasal epithelial cells. However, the association between SARS-CoV-2 and nasal inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP) has not been investigated. We thus investigated the expression of SARS-CoV-2 entry factors in nasal tissues of CRSwNP patients, and their associations with inflammatory endotypes of CRSwNP.
View Article and Find Full Text PDFBackground: Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) and comorbid asthma have more severe disease and are difficult to treat. However, the molecular endotypes associated with CRSwNP with comorbid asthma (CRSwNP + AS) are not clear. This study aimed to investigate the characteristics of type 2 inflammation and the molecular signatures associated with CRSwNP + AS.
View Article and Find Full Text PDFLithospermum arvense is a troublesome dicotyledonous winter annual weed of wheat in China. A L. arvense population (HN01) suspected of being resistant to acetolactate synthase (ALS) inhibitors was found in Henan Province, China.
View Article and Find Full Text PDFBackground: Asia minor bluegrass (Polypogon fugax Nees ex Steud.) is an invasive grass species severely infesting wheat and canola fields in China. In May 2017, a suspected resistant P.
View Article and Find Full Text PDFBackground: Chronic rhinosinusitis with nasal polyps (CRSwNP) is a persistent sinonasal mucosa inflammatory disease. MicroRNAs (miRNAs) that are involved in the pathogenesis of CRSwNP in Northern China remain unknown.
Methods: A miRCURY™ LNA Array was used to analyze miRNA profiles in nasal mucosa tissues of CRSwNP patients (n = 19) and healthy controls (n = 10).
Background: Shortawn foxtail (Alopecurus aequalis Sobol.) is a competitive grass weed infesting winter wheat- and canola-growing fields in China. In May 2016, a suspected A.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
December 2014
This study explored the capsule formation and fiber development process of kapok which is a tree in Yuanjiang dry-hot valleys (DHV) using the methods of paraffin section and scanning electron microscopy. The result showed that formation process of kapok capsule can be divided into four stages: the capsule formation within 5 days after anthesis (DAA), the capsule mass period from 5 to 35 DAA, the capsule dehydration period from 35 to 50 DAA, and the capsule bursting period after 50 DAA. The kapok fiber was developed via endocarp cells differentiation (0-2 DAA), swelling (2-5 DAA), bulging (5-10 DAA), fiber elongating (10-40 DAA), and divorcing from pericarp (40-50 DAA).
View Article and Find Full Text PDF