Publications by authors named "Gbolahan W Okunade"

Loss of one copy of the human ATP2C1 gene, encoding SPCA1 (secretory pathway Ca(2+)-ATPase isoform 1), causes Hailey-Hailey disease, a skin disorder. We performed targeted mutagenesis of the Atp2c1 gene in mice to analyze the functions of this Golgi membrane Ca(2+) pump. Breeding of heterozygous mutants yielded a normal Mendelian ratio among embryos on gestation day 9.

View Article and Find Full Text PDF

In mammals, the most poorly understood P-type ATPases are those of the P(5) subfamily. To begin characterization of the mammalian P(5)-ATPases, BLAST searches of DNA sequence databases were performed. Five genes were identified in the mouse, human, dog, and rat genomes, and the coding sequences of the mouse genes, termed Atp13a1-Atp13a5, were determined.

View Article and Find Full Text PDF

P-type Ca2+-ATPases of the sarco(endo)plasmic reticulum (SERCAs) and plasma membrane (PMCAs) are responsible for maintaining the Ca2+ gradients across cellular membranes that are required for regulation of Ca2+-mediated signaling and other biological processes. Gene-targeting studies of SERCA isoforms 1, 2, and 3 and PMCA isoforms 1, 2, and 4 have confirmed some of the general functions proposed for these pumps, such as a major role in excitation-contraction coupling for SERCA1 and SERCA2 and housekeeping functions for PMCA1 and SERCA2, but have also revealed some unexpected phenotypes. These include squamous cell cancer and plasticity in the regulation of Ca2+-mediated exocytosis in SERCA2 heterozygous mutant mice, modulation of Ca2+ signaling in SERCA3-deficient mice, deafness and balance disorders in PMCA2 null mice, and male infertility in PMCA4 null mice.

View Article and Find Full Text PDF

The relative importance of plasma membrane Ca2+-ATPase (PMCA) 1 and PMCA4 was assessed in mice carrying null mutations in their genes (Atp2b1 and Atp2b4). Loss of both copies of the gene encoding PMCA1 caused embryolethality, whereas heterozygous mutants had no overt disease phenotype. Despite widespread and abundant expression of PMCA4, PMCA4 null (Pmca4-/-) mutants exhibited no embryolethality and appeared outwardly normal.

View Article and Find Full Text PDF