Loss of one copy of the human ATP2C1 gene, encoding SPCA1 (secretory pathway Ca(2+)-ATPase isoform 1), causes Hailey-Hailey disease, a skin disorder. We performed targeted mutagenesis of the Atp2c1 gene in mice to analyze the functions of this Golgi membrane Ca(2+) pump. Breeding of heterozygous mutants yielded a normal Mendelian ratio among embryos on gestation day 9.
View Article and Find Full Text PDFCa2+ gradients across the plasma membrane, required for Ca2+ homeostasis and signaling, are maintained in part by plasma membrane Ca2+-ATPase (PMCA) isoforms 1-4. Gene targeting has been used to analyze the functions of PMCA1, PMCA2, and PMCA4 in mice. PMCA1 null mutant embryos die during the preimplantation stage, and loss of a single copy of the PMCA1 gene contributes to apoptosis in vascular smooth muscle.
View Article and Find Full Text PDFWe previously showed that plasma membrane Ca(2+)-ATPase (PMCA) activity accounted for 25-30% of relaxation in bladder smooth muscle (8). Among the four PMCA isoforms only PMCA1 and PMCA4 are expressed in smooth muscle. To address the role of these isoforms, we measured cytosolic Ca(2+) ([Ca(2+)](i)) using fura-PE3 and simultaneously measured contractility in bladder smooth muscle from wild-type (WT), Pmca1(+/-), Pmca4(+/-), Pmca4(-/-), and Pmca1(+/-)Pmca4(-/-) mice.
View Article and Find Full Text PDFWe investigated the roles and relationships of plasma membrane Ca(2+)-ATPase (PMCA), sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2, and Na(+)/Ca(2+) exchanger (NCX) in bladder smooth muscle contractility in Pmca-ablated mice: Pmca4-null mutant (Pmca4(-/-)) and heterozygous Pmca1 and homozygous Pmca4 double gene-targeted (Pmca1(+/-)Pmca4(-/-)) mice. Gene manipulation did not alter the amounts of PMCA1, SERCA2, and NCX. To study the role of each Ca(2+) transport system, contraction of circular ring preparations was elicited with KCl (80 mM) plus atropine, and then the muscle was relaxed with Ca(2+)-free physiological salt solution containing EGTA.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2004
In mammals, the most poorly understood P-type ATPases are those of the P(5) subfamily. To begin characterization of the mammalian P(5)-ATPases, BLAST searches of DNA sequence databases were performed. Five genes were identified in the mouse, human, dog, and rat genomes, and the coding sequences of the mouse genes, termed Atp13a1-Atp13a5, were determined.
View Article and Find Full Text PDFP-type Ca2+-ATPases of the sarco(endo)plasmic reticulum (SERCAs) and plasma membrane (PMCAs) are responsible for maintaining the Ca2+ gradients across cellular membranes that are required for regulation of Ca2+-mediated signaling and other biological processes. Gene-targeting studies of SERCA isoforms 1, 2, and 3 and PMCA isoforms 1, 2, and 4 have confirmed some of the general functions proposed for these pumps, such as a major role in excitation-contraction coupling for SERCA1 and SERCA2 and housekeeping functions for PMCA1 and SERCA2, but have also revealed some unexpected phenotypes. These include squamous cell cancer and plasticity in the regulation of Ca2+-mediated exocytosis in SERCA2 heterozygous mutant mice, modulation of Ca2+ signaling in SERCA3-deficient mice, deafness and balance disorders in PMCA2 null mice, and male infertility in PMCA4 null mice.
View Article and Find Full Text PDFThe relative importance of plasma membrane Ca2+-ATPase (PMCA) 1 and PMCA4 was assessed in mice carrying null mutations in their genes (Atp2b1 and Atp2b4). Loss of both copies of the gene encoding PMCA1 caused embryolethality, whereas heterozygous mutants had no overt disease phenotype. Despite widespread and abundant expression of PMCA4, PMCA4 null (Pmca4-/-) mutants exhibited no embryolethality and appeared outwardly normal.
View Article and Find Full Text PDFBinding of antigen to the B cell receptor induces a calcium response, which is required for proliferation and antibody production. CD22, a B cell surface protein, inhibits this signal through mechanisms that have been obscure. We report here that CD22 augments calcium efflux after B cell receptor crosslinking.
View Article and Find Full Text PDFIt is known that plasma membrane Ca(2+)-transporting ATPases (PMCAs) extrude Ca(2+) from the cell and that sarco(endo)plasmic reticulum Ca(2+)-ATPases (SERCAs) and secretory pathway Ca(2+)-ATPases (SPCAs) sequester Ca(2+) in intracellular organelles; however, the specific physiological functions of individual isoforms are less well understood. This information is beginning to emerge from studies of mice and humans carrying null mutations in the corresponding genes. Mice with targeted or spontaneous mutations in plasma membrane Ca(2+)-ATPase isoform 2 (PMCA2) are profoundly deaf and have a balance defect due to the loss of PMCA2 in sensory hair cells of the inner ear.
View Article and Find Full Text PDFClC-2 is localized to the apical membranes of secretory epithelia where it has been hypothesized to play a role in fluid secretion. Although ClC-2 is clearly the inwardly rectifying anion channel in several tissues, the molecular identity of the hyperpolarization-activated Cl(-) current in other organs, including the salivary gland, is currently unknown. To determine the nature of the hyperpolarization-activated Cl(-) current and to examine the role of ClC-2 in salivary gland function, a mouse line containing a targeted disruption of the Clcn2 gene was generated.
View Article and Find Full Text PDF