Publications by authors named "Gayone J"

We show that Sn atoms combined with organic ligands can be used to build 2D coordination networks on Au(111) surfaces.

View Article and Find Full Text PDF

We performed an exhaustive study of terephthalic acid (TPA) self-assembly on a Cu(100) surface, where first-layer molecules display two sequential phase transitions in the 200-400 K temperature range, corresponding to different stages of molecular deprotonation. We followed the chemical and structural changes by means of high-resolution X-ray photoelectron spectroscopy (XPS) and variable-temperature scanning tunneling microscopy (STM), which were interpreted on the basis of density functional theory (DFT) calculations and photoemission simulations. In order to reveal the spectroscopic contributions of the molecules in different states of deprotonation, we modified the substrate reactivity by deposition of a small amount of Sn, which hampers the deprotonation reaction.

View Article and Find Full Text PDF

The chiral expression of a molecule on a surface is driven from a random solid solution on Cu(100) to a racemic crystal on a Sn/Cu(100) alloy. Density functional theory simulations reveal how the growth of the racemate is influenced by the underlying surface.

View Article and Find Full Text PDF

A convergent synthesis of racemic 5-amino[6]hexahelicene is described. Cross-coupling reactions are used to assemble a pentacyclic framework, and a metal-catalyzed ring-closure comprises the final step. The enantiomers were separated by means of chromatography and the absolute configurations were assigned by comparison of the CD spectra with hexahelicene.

View Article and Find Full Text PDF

A combination of Scanning Tunnelling Microscopy and Density Functional Theory simulations highlights the role of van der Waals interactions in the self-assembly of an aminohelicene on Cu(100) and Au(111).

View Article and Find Full Text PDF

A comparative study on the adsorption of buthanedithiol (BDT), hexanedithiol (HDT), and nonanedithiol (NDT) on Au(111) from ethanolic and n-hexane solutions and two different preparation procedures is presented. SAM characterization is based on reflection-absorption infrared spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, and time of flight direct recoil spectroscopy. Results indicate that one can obtain a standing-up phase of dithiols and that the amount of the precursor lying-down phase decreases from BDT to NDT, irrespective of the solvent and self-assembly conditions.

View Article and Find Full Text PDF

We present a study of the growth and thermal stability of hexanethiol (C6) films on GaAs(110) by direct recoil spectroscopy with time-of-flight analysis. We compare our results with the better known case of C6 adsorption on Au(111). In contrast to the two-step adsorption kinetics observed for Au surfaces after lengthy exposures, data for C6 adsorption on the GaAs(110) surface are consistent with the formation of a single dense phase of C6 molecules at lower exposures.

View Article and Find Full Text PDF

We have used time-of-flight (TOF) direct recoiling spectroscopy (DRS) to follow propanethiol adsorption at 300 K from the vapor phase on an Ag(111) surface, for exposures ranging from 10(-1) to 10(5) L. Results show that the adsorption proceeds with changes in the sticking coefficient, consistent with at least three phases. At low exposures, the alkanethiol molecules adsorb with high probability at defect sites, followed by a slower growth mode that essentially covers the whole surface.

View Article and Find Full Text PDF

Using first-principles calculations and angle-resolved photoemission, we show that the spin-orbit interaction leads to a strong splitting of the surface-state bands on low-index surfaces of Bi. The dispersion of the states and the corresponding Fermi surfaces are profoundly modified in the whole surface Brillouin zone. We discuss the implications of these findings with respect to a proposed surface charge density wave on Bi(111) as well as to the surface screening, surface spin-density waves, electron (hole) dynamics in surface states, and to possible applications to the spintronics.

View Article and Find Full Text PDF

We have studied the energy dependence of the electron-phonon coupling strength on Bi(100). A fit of the temperature-dependent surface state linewidth results in a change of the coupling parameter lambda from 0.20+/-0.

View Article and Find Full Text PDF