Publications by authors named "Gayle M Davey"

DEC-205 is a cell-surface receptor that transports bound ligands into the endocytic pathway for degradation or release within lysosomal endosomes. This receptor has been reported to bind a number of ligands, including keratin, and some classes of CpG oligodeoxynucleotides (ODN). In this study, we explore in detail the requirements for binding ODNs, revealing that DEC-205 efficiently binds single-stranded, phosphorothioated ODN of ≥14 bases, with preference for the DNA base thymidine, but with no requirement for a CpG motif.

View Article and Find Full Text PDF

Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection.

View Article and Find Full Text PDF

Follicular dendritic cells and macrophages have been strongly implicated in presentation of native Ag to B cells. This property has also occasionally been attributed to conventional dendritic cells (cDC) but is generally masked by their essential role in T cell priming. cDC can be divided into two main subsets, cDC1 and cDC2, with recent evidence suggesting that cDC2 are primarily responsible for initiating B cell and T follicular helper responses.

View Article and Find Full Text PDF

Liver tissue-resident memory T (Trm) cells migrate throughout the sinusoids and are capable of protecting against malaria sporozoite challenge. To gain an understanding of liver Trm cell development, we examined various conditions for their formation. Although liver Trm cells were found in naive mice, their presence was dictated by antigen specificity and required IL-15.

View Article and Find Full Text PDF

We describe an MHC class II (I-A)-restricted TCR transgenic mouse line that produces CD4 T cells specific for species. This line, termed PbT-II, was derived from a CD4 T cell hybridoma generated to blood-stage ANKA (PbA). PbT-II cells responded to all species and stages tested so far, including rodent (PbA, NK65, AS, and 17XNL) and human () blood-stage parasites as well as irradiated PbA sporozoites.

View Article and Find Full Text PDF

In recent years, various intervention strategies have reduced malaria morbidity and mortality, but further improvements probably depend upon development of a broadly protective vaccine. To better understand immune requirement for protection, we examined liver-stage immunity after vaccination with irradiated sporozoites, an effective though logistically difficult vaccine. We identified a population of memory CD8 T cells that expressed the gene signature of tissue-resident memory T (Trm) cells and remained permanently within the liver, where they patrolled the sinusoids.

View Article and Find Full Text PDF

DCs often require stimulation from CD4(+) T cells to propagate CD8(+) T cell responses, but precisely how T cell help optimizes the priming capacity of DCs and why this appears to differ between varying types of CD8(+) T cell immunity remains unclear. We show that CD8(+) T cell priming upon HSV-1 skin infection depended on DCs receiving stimulation from both IFN-α/β and CD4(+) T cells to provide IL-15. This was not an additive effect but resulted from CD4(+) T cells amplifying DC production of IL-15 in response to IFN-α/β.

View Article and Find Full Text PDF

Targeting Ags to dendritic cell (DC) surface receptors can induce a variety of responses depending on the DC type targeted, the receptor targeted, and the adjuvant used. Clec9A (DNGR-1), which is expressed by CD8(+) DCs, has been shown to bind F-actin exposed on damaged cells. Targeting Ag to this receptor in mice and nonhuman primates induces strong humoral immunity even in the absence of adjuvant, a process seen for a few select DC receptors.

View Article and Find Full Text PDF

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P.

View Article and Find Full Text PDF

Fluorescent proteins can be used to visualize cells and their constituents by various imaging techniques. Adoptive transfer of T cells from C57Bl/6 (B6) mice that expressed DsRed.T3 under the actin promoter lead to frequent rejection of transferred cells.

View Article and Find Full Text PDF

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood.

View Article and Find Full Text PDF

Murine cerebral malaria is a complex disease caused by Plasmodium berghei ANKA infection. Several cell types, including CD8(+) T cells, are essential effectors of disease. Although the use of transgenic parasites expressing model antigens has revealed the induction of cytotoxic T lymphocytes (CTL) specific for these model antigens, there is no direct evidence for a response to authentic blood-stage parasite antigens, nor any knowledge of its magnitude.

View Article and Find Full Text PDF

Three surface molecules of mouse CD8(+) dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant.

View Article and Find Full Text PDF

To investigate the role of Aire in thymic selection, we examined the cellular requirements for generation of ovalbumin (OVA)-specific CD4 and CD8 T cells in mice expressing OVA under the control of the rat insulin promoter. Aire deficiency reduced the number of mature single-positive OVA-specific CD4(+) or CD8(+) T cells in the thymus, independent of OVA expression. Importantly, it also contributed in 2 ways to OVA-dependent negative selection depending on the T-cell type.

View Article and Find Full Text PDF

Polyinosinic:polycytidylic acid (poly IC), a double-stranded RNA, is an effective adjuvant in vivo. IFN-λs (also termed IL-28/29) are potent immunomodulatory and antiviral cytokines. We demonstrate that poly IC injection in vivo induces large amounts of IFN-λ, which depended on hematopoietic cells and the presence of TLR3 (Toll-like receptor 3), IRF3 (IFN regulatory factor 3), IRF7, IFN-I receptor, Fms-related tyrosine kinase 3 ligand (FL), and IRF8 but not on MyD88 (myeloid differentiation factor 88), Rig-like helicases, or lymphocytes.

View Article and Find Full Text PDF

Despite extensive evidence that Plasmodium species are capable of stimulating the immune system, the association of malaria with a higher incidence of other infectious diseases and reduced responses to vaccination against unrelated pathogens suggests the existence of immune suppression. Recently, we provided evidence that blood-stage Plasmodium berghei infection leads to suppression of MHC class I-restricted immunity to third party (non-malarial) antigens as a consequence of systemic DC activation. This earlier study did not, however, determine whether reactivity was also impaired to MHC class II-restricted third party antigens or to Plasmodium antigens themselves.

View Article and Find Full Text PDF

Despite its potential for involvement in viral immunity, little evidence links TLR3 to adaptive antiviral responses. Here we show that TLR3 is required for the generation of CD8 T cell immunity to HSV-1. The magnitude of the gB-specific CD8 T cell response after flank infection by HSV-1 was significantly reduced in mice lacking TIR domain-containing adaptor-inducing IFN-beta or TLR3, but not MyD88.

View Article and Find Full Text PDF

SOCS1 profoundly influences the development and peripheral homeostasis of CD8+ T cells but has less impact on CD4+ T cells. Despite the moderate influence of SOCS1 in the development of the total CD4 T-cell lineage, we show here that SOCS1 deficiency resulted in a 10-fold increase in Foxp3(+) CD4(+) T cells in the thymus. Increased numbers of Foxp3+ thymocytes occurred in mice with T-cell-specific ablation of SOCS1, suggesting that the effect is T-cell intrinsic.

View Article and Find Full Text PDF

Antigen expressed as MHC Class I glycoprotein (pMHCI) complexes on dendritic cells is the primary driver of CD8(+) T cell clonal expansion and differentiation. As we seek to define the molecular differences between acutely stimulated cytotoxic T lymphocyte (CTL) effectors and long-lived memory T cells, it is essential that we understand the duration of in vivo pMHCI persistence. Although infectious influenza A virus is readily cleared by mammalian hosts, that does not necessarily mean that all influenza antigen is totally eliminated.

View Article and Find Full Text PDF

Autoimmune diseases tend to be chronic and progressive, but how these responses are sustained is not clear. One cell type that might contribute to autoimmunity is the cytotoxic T lymphocyte (CTL), which, as a consequence of causing tissue destruction and production of cytokines, could provide a sustained supply of antigen and inflammatory signals for dendritic cells to maintain immune stimulation. Here we examined whether such CTL-mediated tissue damage alone could provide antigen in the right context to recruit immune effectors and sustain autoimmunity.

View Article and Find Full Text PDF

Peripheral tolerance induction is critical for the maintenance of self-tolerance and can be mediated by immunoregulatory T cells or by direct induction of T-cell anergy or deletion. Although the molecular processes underlying anergy have been extensively studied, little is known about the molecular basis for peripheral T-cell deletion. Here, we determined the gene expression signature of peripheral CD8(+) T cells undergoing deletional tolerance, relative to those undergoing immunogenic priming or lymphopenia-induced proliferation.

View Article and Find Full Text PDF

CD8 T-cell priming following DNA vaccination has been shown to confer protection against infections and tumors. These vaccines, however, have been disappointing in their ability to boost memory responses in prime-boost settings. We recently found that migratory dendritic cell (DC) subsets inefficiently stimulate memory CD8 T cells, raising the possibility that the poor boosting capacity of DNA encoded antigens might relate to their presentation by subsets of DCs that are only capable of efficiently stimulating naive T cells.

View Article and Find Full Text PDF

Although CD8(+) T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8(+) T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8(+) T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P.

View Article and Find Full Text PDF

A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain.

View Article and Find Full Text PDF