Transcripts derived from select clades of transposable elements are among the first to appear in early mouse and human embryos, indicating transposable elements and the mechanisms that regulate their activity are fundamental to the establishment of the founding mammalian lineages. However, the mechanisms by which these parasitic sequences are involved in directing the developmental program are still poorly characterized. Transposable elements are regulated through epigenetic means, where combinatorial patterns of DNA methylation and histone 3 lysine 9 trimethylation (H3K9me3) suppress their transcription.
View Article and Find Full Text PDFIn studies of somatic cell nuclear transfer (SCNT), the ability of factors within the oocyte to epigenetically reprogram transferred nuclei is essential for embryonic development of the clone to proceed. However, irregular patterns of X-chromosome inactivation, abnormal expression of imprinted genes, and genomic DNA hypermethylation are frequently observed in reconstructed embryos, suggesting abnormalities in this process. To better understand the epigenetic events underlying SCNT reprogramming, we sought to determine if the abnormal DNA methylation levels observed in cloned embryos result from a failure of the oocyte to properly reprogram transcription versus differential biochemical regulation of the DNA methyltransferase family of enzymes (DNMTs) between embryonic and somatic nuclei.
View Article and Find Full Text PDF