Cranberry (, L.) is a commercial small fruit that is native to North America. Oregon ranks fourth in cranberry production in the U.
View Article and Find Full Text PDFAs molecular genetic techniques improve and sequence data becomes available for more fungal species, taxonomic classifications historically based upon growth morphology alone are being revisited and occasionally reclassified. Herein, we present such an instance for the fungal pathogen that causes dry berry disease of caneberries. The organism was previously described as the basidiomycete fungus based upon the pathogen's production of Rhizoctonia-like angular branching hyphae.
View Article and Find Full Text PDFis a plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. This bacterium colonizes host vascular tissues via the production of exopolysaccharides (EPSs) including amylovoran. It is well-established that the nearly ubiquitous plasmid pEA29 of is an essential virulence factor, but the underlying mechanism remains uncharacterized.
View Article and Find Full Text PDFIn surveys from 2006 to 2014, streptomycin resistance in Erwinia amylovora from pear-growing areas in California declined from very high incidence in 2006 and 2007 to very low incidence in 2013 and 2014. The majority of resistant strains were designated as moderately resistant-low (MR-L), and were almost exclusively found in Sacramento County, whereas highly resistant (HR) strains were only recovered in Sutter-Yuba and San Joaquin counties. Resistance of HR strains was associated with a mutation in codon 43 of the chromosomal rpsL gene that results in a change from lysine to arginine, the same mutation that was originally reported for resistant strains from California in the mid-1970s.
View Article and Find Full Text PDFManagement of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species.
View Article and Find Full Text PDFThe emergence and spread of streptomycin-resistant strains of Erwinia amylovora in Michigan has necessitated the evaluation of new compounds effective for fire blight control. The aminoglycoside antibiotic kasugamycin (Ks) targets the bacterial ribosome and is particularly active against E. amylovora.
View Article and Find Full Text PDFStreptomycin-resistant (Sm(R)) strains of the fire blight pathogen Erwinia amylovora were first isolated in southwest Michigan in 1991. Since that time, resistant strains have progressed northward to other apple-producing regions in the state. A total of 98.
View Article and Find Full Text PDFErwinia amylovora, the causal agent of fire blight, is an enterobacterial pathogen of Rosaceous plants including apple and pear. We have been studying the response of E. amylovora to oxidative stress because, during infection, the bacterium elicits an oxidative burst response in host plants.
View Article and Find Full Text PDFABSTRACT Four Erwinia strains, originally isolated in Japan from pear trees with bacterial shoot blight symptoms, were analyzed to determine their genetic relationship with Erwinia amylovora and E. pyrifoliae. When genomes were characterized with amplified fragment length polymorphism markers and by comparative groEL sequence analysis, the Japanese Erwinia sp.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2004
The nucleotide sequences, genetic organization, and distribution of plasmids pEU30 (30,314 bp) and pEL60 (60,145 bp) from the plant pathogen Erwinia amylovora are described. The newly characterized pEU30 and pEL60 plasmids inhabited strains isolated in the western United States and Lebanon, respectively. The gene content of pEU30 resembled plasmids found in plant-associated bacteria, while that of pEL60 was most similar to IncL/M plasmids inhabiting enteric bacteria.
View Article and Find Full Text PDFThe plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E.
View Article and Find Full Text PDF