Publications by authors named "Gayathri Pillai"

Nonlinear physics-based harmonic generators and modulators are critical signal processing technologies for optical and electrical communication. However, most optical modulators lack multi-channel functionality while frequency synthesizers have deficient control of output tones, and they additionally require vacuum, complicated setup, and high-power configurations. Here, we report a piezoelectrically actuated nonlinear Microelectromechanical System (MEMS) based Single-Input-Multiple-Output multi-domain signal processing unit that can simultaneously generate programmable parallel information channels (> 100) in both frequency and spatial domain.

View Article and Find Full Text PDF

Structural and electrode material engineering methodology to attain quality factor enhancement in a support transducer enabled Wine-glass and Lamé mode resonator has been demonstrated in this work. To boost the quality factor, a series of short mechanical couplers is utilized to link the central resonant structure with the piezoelectric transducer arms. Two different top electrode materials are investigated, and the effect of metal loading on the performance of aluminum nitride (AlN)-on-Si-based resonator is investigated in detail.

View Article and Find Full Text PDF

We propose an apodization technique-based composite thin-film bulk acoustic wave resonator (c-FBAR) design to enable the displacement and strain energy confinement at the central section of the resonator while in operation at the resonance mode. Sinc-shaped AlN on Silicon on Insulator apodized c-FBARs is designed to attain close to 90% energy localization. In this paper, a single crystal silicon as the mechanical layer and an AlN piezoelectric material as the transducer layer of the resonator implemented by InvenSense Inc.

View Article and Find Full Text PDF