Fibrillar collagen accumulation emerges as a promising biomarker in several diseases, such as desmoplastic tumors and unstable atherosclerotic plaque. Gold nanorods (GNRs) hold great potential as contrast agents in high-resolution, biomedically safe, and non-invasive photoacoustic imaging (PAI). This study presents the design and characterization of a specialized imaging tool which exploits GNR assisted targeted photoacoustic imaging that is tailored for the identification of fibrillar collagen.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Conventional ultrasound (US) imaging employs the delay and sum (DAS) receive beamforming with dynamic receive focus for image reconstruction due to its simplicity and robustness. However, the DAS beamforming follows a geometrical method of delay estimation with a spatially constant speed-of-sound (SoS) of 1540 m/s throughout the medium irrespective of the tissue in-homogeneity. This approximation leads to errors in delay estimations that accumulate with depth and degrades the resolution, contrast and overall accuracy of the US image.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
November 2023
In ultrasound (US)-guided interventions, accurately tracking and visualizing needles during in-plane insertions are significant challenges due to strong directional specular reflections. These reflections violate the geometrical delay and apodization estimations in the conventional delay and sum beamforming (DASB) degrading the visualization of needles. This study proposes a novel reflection tuned apodization (RTA) to address this issue and facilitate needle enhancement through DASB.
View Article and Find Full Text PDFBiomed Phys Eng Express
March 2023
In ultrasound (US) guided interventions, the accurate visualization and tracking of needles is a critical challenge, particularly during in-plane insertions. An inaccurate identification and localization of needles lead to severe inadvertent complications and increased procedure times. This is due to the inherent specular reflections from the needle with directivity depending on the angle of incidence of the US beam, and the needle inclination.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Ultrasound (US) imaging is becoming the routine modality for the diagnosis and prognosis of lung pathologies. Lung US imaging relies on artifacts from acoustic impedance (Z) mismatches to distinguish and interpret the normal and pathological lung conditions. The air-pleura interface of the normal lung displays specularity due to the huge Z mismatches.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2020
Ultrasound (US) imaging systems typically employ a single beamforming scheme which is the delay and sum (DAS) beamforming due to its reduced complexity. However, DAS results in images with limited resolution and contrast. The limitations of DAS have been overcome by, delay multiply and sum (DMAS) beamforming, making it especially preferable in cases where finer image details are required in larger depth of scans for an accurate diagnosis.
View Article and Find Full Text PDF