We report the extraction of keratin nanofibers from the medulla of a parent yarn after denaturing the cuticle and cortex microstructures of a merino wool yarn. Controlled alkaline hydrolysis, followed by high-speed blending in acetic acid, allowed for the extraction of keratin protein nanofibers with an average diameter of 25 nm and a length of less than 3 μm. SEM and AFM analyses showed the removal of cuticle cells from the yarn.
View Article and Find Full Text PDFA new approach was used to produce electrically conductive polyamide yarns, employing an electroless plating technique, which involved stabilizing silver nanoparticles on the surface of the yarn using Sn. First, the [Ag(NH)] complex was reduced using Sn to produce silver nanoparticle seed layers on the fiber surface, followed by a formaldehyde reduction. The nucleation and growth of silver nanoparticles on the fiber surface were observed through SEM images, demonstrating varying degrees of silver deposition depending on the silver concentration.
View Article and Find Full Text PDFWorldwide, there is an amplified interest in nanotechnology-based approaches to develop efficient nitrogen, phosphorus, and potassium fertilizers to address major challenges pertaining to food security. However, there are significant challenges associated with fertilizer manufacture and supply as well as cost in both economic and environmental terms. The main issues relating to nitrogen fertilizer surround the use of fossil fuels in its production and the emission of greenhouse gases resulting from its use in agriculture; phosphorus being a mineral source makes it nonrenewable and casts a shadow on its sustainable use in agriculture.
View Article and Find Full Text PDFWhile slow release of chemicals has been widely applied for drug delivery, little work has been done on using this general nanotechnology-based principle for delivering nutrients to crops. In developing countries, the cost of fertilizers can be significant and is often the limiting factor for food supply. Thus, it is important to develop technologies that minimize the cost of fertilizers through efficient and targeted delivery.
View Article and Find Full Text PDF