Premise: (H-pyrophosphatase) and (-inositol oxygenase) are genes that, when overexpressed individually, enhance the growth and abiotic stress tolerance of plants. We propose that pyramiding and genes will further improve stress tolerance under water-limited and salt-stress conditions.
Methods: and reciprocal crosses were developed and phenomic approaches used to investigate the possible synergy between these genes.
Neonicotinoid pesticides can have a multitude of negative sublethal effects on bees. Understanding their impact on wild populations requires accurately estimating the dosages bees encounter under natural conditions. This is complicated by the possibility that bees might influence their own exposure: two recent studies found that bumblebees () preferentially consumed neonicotinoid-contaminated nectar, even though these chemicals are thought to be tasteless and odourless.
View Article and Find Full Text PDFA fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the H-PPase () has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H-PPases (TaVP) in spring wheat Bobwhite L.
View Article and Find Full Text PDFPhloem loading and long-distance transport of photoassimilate from source leaves to sink organs are essential physiological processes that contribute to plant growth and yield. At a minimum, three steps are involved: phloem loading in source organs, transport along the phloem path, and phloem unloading in sink organs. Each of these can have variable rates contingent on the physiological state of the plant, and thereby influence the overall transport rate.
View Article and Find Full Text PDFCellular pyrophosphate (PPi) homeostasis is vital for normal plant growth and development. Plant proton-pumping pyrophosphatases (H -PPases) are enzymes with different tissue-specific functions related to the regulation of PPi homeostasis. Enhanced expression of plant H -PPases increases biomass and yield in different crop species.
View Article and Find Full Text PDFEnergy partitioning and plant growth are mediated in part by a type I H-pumping pyrophosphatase (H-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H-PPase from also functions in "reverse mode" to synthesize PP using the transmembrane H gradient.
View Article and Find Full Text PDFFront Plant Sci
November 2017
has emerged as a model moss system to investigate the evolution of various plant characters in early land plant lineages. Yet, there is merely a disparate body of ultrastructural and physiological evidence from other mosses to draw inferences about the modes of photosynthate transport in the alternating generations of . We performed a series of ultrastructural, fluorescent tracing, physiological, and immunohistochemical experiments to elucidate a coherent model of photosynthate transport in this moss.
View Article and Find Full Text PDFAgbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant (H-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic.
View Article and Find Full Text PDFPhosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high- and low-affinity Pi transporters and the ability to induce root architectural changes to forage P.
View Article and Find Full Text PDFUpregulation of H(+)-PPase in diverse crop systems triggers agriculturally beneficial phenotypes including augmented stress tolerance, improved water and nutrient use efficiencies, and increased biomass and yield. We argue that further research is warranted to maximize the full potential of this simple and successful biotechnology.
View Article and Find Full Text PDFBackground And Aims: Although Oryza sativa (rice) is one of the most important cereal crops, the mechanism by which sucrose, the major photosynthate, is loaded into its phloem is still a matter of debate. Current opinion holds that the phloem loading pathway in rice could involve either a symplasmic or an apoplasmic route. It was hypothesized, on the basis of a complementary body of evidence from arabidopsis, which is an apoplasmic loader, that the membrane specificity of proton pyrophosphatases (H(+)-PPases; OVPs) in the sieve element-companion cell (SE-CC) complexes of rice source leaves would support the existence of either of the aforementioned phloem loading mechanisms.
View Article and Find Full Text PDFPlant productivity is determined in large part by the partitioning of assimilates between the sites of production and the sites of utilization. Proton-pumping pyrophosphatases (H(+)-PPases) are shown to participate in many energetic plant processes, including general growth and biomass accumulation, CO2 fixation, nutrient acquisition, and stress responses. H(+)-PPases have a well-documented role in hydrolyzing pyrophosphate (PPi) and capturing the released energy to pump H(+) across the tonoplast and endomembranes to create proton motive force (pmf).
View Article and Find Full Text PDFPhloem loading is a critical process in plant physiology. The potential of regulating the translocation of photoassimilates from source to sink tissues represents an opportunity to increase crop yield. Pyrophosphate homeostasis is crucial for normal phloem function in apoplasmic loaders.
View Article and Find Full Text PDFPhosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions.
View Article and Find Full Text PDFPlant nitrate (NO3(-)) acquisition depends on the combined activities of root high- and low-affinity NO3(-) transporters and the proton gradient generated by the plasma membrane H(+)-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa 'Conquistador') plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H(+)-PPase) of Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFCoordinate regulation of transporters at both the plasma membrane and vacuole contribute to plant cell's ability to adapt to a changing environment and play a key role in the maintenance of the chemiosmotic circuits required for cellular growth. The plasma membrane (PM) Na⁺/H⁺ antiporter (SOS1) is involved in salt tolerance, presumably in sodium extrusion; the vacuolar type I H⁺-PPase AVP1 is involved in vacuolar sodium sequestration, but its overexpression has also been shown to alter the abundance and activity of the PM H⁺-ATPase. Here we investigate the relationship between these transporters utilizing loss-of-function mutants of SOS1 (sos1) and increased expression of AVP1 (AVP1OX).
View Article and Find Full Text PDFIncreased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proton pump activity of the vacuolar pyrophosphatase, which generates a higher proton electrochemical gradient across the vacuolar membrane, leading to lower water potential in the plant vacuole and higher secondary transporter activities that prevent ion accumulation to toxic levels in the cytoplasm. Additionally, overexpression of AVP1 appears to stimulate auxin polar transport, which in turn stimulates root development.
View Article and Find Full Text PDFPrevious literature has shown the presence of a plasma membrane (PM) localized type I H(+)-PPase in sieve elements of Ricinus communis. Unfortunately, the physiological relevance of these findings remains obscure due to the lack of genetic and molecular reagents to study R. communis.
View Article and Find Full Text PDFConcerns about phosphorus (P) sustainability in agriculture arise not only from the potential of P scarcity but also from the known effects of agricultural P use beyond the field, i.e., eutrophication leading to dead zones in lakes, rivers and coastal oceans due to runoffs from fertilized fields.
View Article and Find Full Text PDFThe Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up-regulation of the type I H+-PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought- and salt tolerance when compared to wild-type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions.
View Article and Find Full Text PDFPlants challenged by limited phosphorus undergo dramatic morphological and architectural changes in their root systems in order to increase their absorptive surface area. In this paper, it is shown that phosphorus deficiency results in increased expression of the type I H+-pyrophosphatase AVP1 (AVP, Arabidopsis vacuolar pyrophosphatase), subsequent increased P-type adenosine triphosphatase (P-ATPase)-mediated rhizosphere acidification and root proliferation. Molecular genetic manipulation of AVP1 expression in Arabidopsis, tomato and rice results in plants that outperform controls when challenged with limited phosphorus.
View Article and Find Full Text PDFChemiosmotic circuits of plant cells are driven by proton (H(+)) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their constantly changing environments and at the same time maintain optimal metabolic conditions, the expression, activity and interplay of the pumps generating these H(+) gradients have to be tightly regulated.
View Article and Find Full Text PDF