Publications by authors named "Gavshina A"

Wild-type SAASoti and its monomeric variant mSAASoti can undergo phototransformations, including reversible photoswitching of the green form to a nonfluorescent state and irreversible green-to-red photoconversion. In this study, we extend the photochemistry of mSAASoti variants to enable reversible photoswitching of the red form. This result is achieved by rational and site-saturated mutagenesis of the M163 and F177 residues.

View Article and Find Full Text PDF

Photoswitchable fluorescent proteins (FPs) have become indispensable tools for studying life sciences. mSAASoti FP, a biphotochromic FP, is an important representative of this protein family. We created a series of mSAASoti mutants in order to obtain fast photoswitchable variants with high brightness.

View Article and Find Full Text PDF

Biphotochromic proteins simultaneously possess reversible photoswitching (on-to-off) and irreversible photoconversion (green-to-red). High photochemical reactivity of cysteine residues is one of the reasons for the development of "mox"-monomeric and oxidation resistant proteins. Based on site-saturated simultaneous two-point C105 and C117 mutagenesis, we chose C21N/C71G/C105G/C117T/C175A as the moxSAASoti variant.

View Article and Find Full Text PDF

Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied.

View Article and Find Full Text PDF

SAASoti is a unique fluorescent protein (FP) that combines properties of green-to-red photoconversion and reversible photoswitching (in its green state), without any amino acid substitutions in the wild type gene. In the present work, we investigated its ability to photoswitch between fluorescent red ('on') and dark ('off') states. Surprisingly, generated by 400 nm exposure, the red form of SAASoti (R1) does not exhibit any reversible photoswitching behavior under 550 nm illumination, while a combination of prior 470 nm and subsequent 400 nm irradiation led to the appearance of another-R2-form that can be partially photoswitched (550 nm) to the dark state, with a very fast recovery time.

View Article and Find Full Text PDF

Nicking endonucleases (NEases) selectively cleave single DNA strands in double-stranded DNAs at a specific site. They are widely used in bioanalytical applications and in genome editing; however, the peculiarities of DNA-protein interactions for most of them are still poorly studied. Previously, it has been shown that the large subunit of heterodimeric restriction endonuclease BspD6I (Nt.

View Article and Find Full Text PDF

Photoconvertible fluorescent proteins (PCFPs) are widely used as markers for the visualization of intracellular processes and for sub-diffraction single-molecule localization microscopy. Although wild type of a new photoconvertible fluorescent protein SAASoti tends to aggregate, we succeeded, via rational mutagenesis, to obtain variants that formed either tetramers or monomers. We compare two approaches: one is based on the structural similarity between SAASoti and Kaede, which helped us to identify a single point mutation (V127T) at the protein's hydrophobic interface that leads to monomerization.

View Article and Find Full Text PDF

Background: Nicking endonucleases are enzymes that recognize specific sites in double-stranded DNA and cleave only one strand at a predetermined position. These enzymes are involved in DNA replication and repair; they can also function as subunits of bacterial heterodimeric restriction endonucleases. One example of such a proteins is the restriction endonuclease BspD6I (R.

View Article and Find Full Text PDF