Hydrological restriction from the Atlantic Ocean transformed the Mediterranean Sea into a giant saline basin during the Messinian Salinity Crisis (5.97-5.33 million years ago).
View Article and Find Full Text PDFEnviron Sci Technol
June 2023
The Dead Sea (DS) potash industry halite waste accumulation rate is estimated at 0.2 m year, across 140 km of evaporation ponds in Israel and Jordan, totaling ∼28 million m year. As accommodation in the southern DS basin space is nearly exhausted, it is planned in Israel to dredge newly precipitated salt and convey it in a solid state to the northern DS basin by constructing a 30 km conveyor to the northern DS basin where the salt will be disposed.
View Article and Find Full Text PDFThe hypersaline Dead Sea and its sediments are natural laboratories for studying extremophile microorganism habitat response to environmental change. In modern times, increased freshwater runoff to the lake surface waters resulted in stratification and dilution of the upper water column followed by microbial blooms. However, whether these events facilitated a microbial response in the deep lake and sediments is obscure.
View Article and Find Full Text PDFAuthigenic processes in aqueous environments, such as mineral precipitation, can create turbidity which may have undesired effects on the natural environment and in industrial processes. Turbidity is often used to monitor such environments, as a mean to determine water quality and to follow the industrial processes. However, turbidity develops and grows or dissipates with time as the processes underlying its development advance.
View Article and Find Full Text PDF"Man-made" or unconventional freshwater, like desalinated seawater or reclaimed effluents, is increasingly introduced into regional water cycles in arid or semi-arid countries. We show that the breakthrough of reverse osmosis-derived freshwater in the largely engineered water cycle of the greater Tel Aviv region (Dan Region) has profoundly changed previous isotope fingerprints. This new component can be traced throughout the system, from the drinking water supply, through sewage, treated effluents, and artificially recharged groundwater at the largest Soil-Aquifer Treatment system in the Middle East (Shafdan) collecting all the Dan region sewage.
View Article and Find Full Text PDFAn ancient, brackish, anoxic, and relatively hot water body exists within the Yarqon-Tanninim Aquifer in southern Israel. A hydrogeological-geochemical conceptual model is presented, whereby the low water quality is the outcome of three conditions that are met simultaneously: (1) Presence of an organic-rich unit with low permeability that overlies and confines the aquifer; the confining unit contains perched horizons with relatively saline water. (2) Local phreatic/roofed conditions within the aquifer that enable seepage of the organic-rich brackish water from above.
View Article and Find Full Text PDFGeochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane.
View Article and Find Full Text PDFThe composition of groundwater reclaimed from tertiary soil aquifer treatment systems reflects the dynamic processes taking place in the subsurface, between the infiltration basin and the production wells. At the end of year 2000, following more than a decade of operation, high Mn concentrations (2 micromol L(-1) < or = Mn < or = 40 micromol L(-1)) appeared in the reclaimed effluents of the Dan Region Sewage Reclamation Project (Shafdan), Israel. A mass balance indicates that the high Mn excess originated from the aquifer rocks, most likely following reduction of sedimentary Mn-oxides under suboxic conditions.
View Article and Find Full Text PDFThe flow rate of the Lower Jordan River has changed dramatically during the second half of the 20th century. The diversion of its major natural sources reduced its flow rate and led to drying events during the drought years of 2000 and 2001. Under these conditions of low flow rates, the potential influence of external sources on the river discharge and chemical composition became significant.
View Article and Find Full Text PDFThe Lower Jordan River is located in the semiarid area of the Jordan Valley, along the border between Israel and Jordan. The implementation of the water sections of the peace treaty between Israel and Jordan and the countries' commitment to improve the ecological sustainability of the river system require a better understanding of the riverine environment. This paper investigates the sources and transformations of nitrogen compounds in the Lower Jordan River by applying a combination of physical, chemical, isotopic, and mathematical techniques.
View Article and Find Full Text PDF