DNA sequencing technologies have advanced significantly in the last few years leading to advancements in biomedical research which has improved personalised medicine and the discovery of new treatments for diseases. Sequencing technology advancement has also reduced the cost of DNA sequencing, which has led to the rise of direct-to-consumer (DTC) sequencing, e.g.
View Article and Find Full Text PDFCytochrome oxidase is the terminal complex of eukaryotic oxidative phosphorylation in mitochondria. This process couples the reduction of electron carriers during metabolism to the reduction of molecular oxygen to water and translocation of protons from the internal mitochondrial matrix to the inter-membrane space. The electrochemical gradient formed is used to generate chemical energy in the form of adenosine triphosphate to power vital cellular processes.
View Article and Find Full Text PDFMitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products.
View Article and Find Full Text PDFSignaling diversity and subsequent complexity in higher eukaryotes is partially explained by one gene encoding a polypeptide with multiple biochemical functions in different cellular contexts. For example, mouse double minute 2 (MDM2) is functionally characterized as both an oncogene and a tumor suppressor, yet this dual classification confounds the cell biology and clinical literatures. Identified via complementary biochemical, organellar, and cellular approaches, we report that MDM2 negatively regulates NADH:ubiquinone oxidoreductase 75 kDa Fe-S protein 1 (NDUFS1), leading to decreased mitochondrial respiration, marked oxidative stress, and commitment to the mitochondrial pathway of apoptosis.
View Article and Find Full Text PDFCytochrome oxidase (COX) is a hetero-oligomeric complex of the mitochondrial inner membrane that reduces molecular oxygen to water, a reaction coupled to proton transfer from the mitochondrial matrix to the intermembrane space. In the yeast , COX is composed of 11-13 different polypeptide subunits. Here, using pulse labeling of mitochondrial gene products in isolated yeast mitochondria, combined with purification of tagged COX subunits and ancillary factors, we studied the Cox2p assembly intermediates.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2018
The mitochondrial network is a dynamic organization within eukaryotic cells that participates in a variety of essential cellular processes, such as adenosine triphosphate (ATP) synthesis, central metabolism, apoptosis and inflammation. The mitochondrial network is balanced between rates of fusion and fission that respond to pathophysiologic signals to coordinate appropriate mitochondrial processes. Mitochondrial fusion and fission are regulated by proteins that either reside in or translocate to the inner or outer mitochondrial membranes or are soluble in the inter-membrane space.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
Caspases are proteases that are essential components of apoptotic cell death pathways. There are approximately one dozen apoptotic caspases found in organisms where cells die via apoptosis. These caspases are responsible for initiation or execution of apoptosis through the proteolytic cleavage of specific substrates.
View Article and Find Full Text PDFJ Bioenerg Biomembr
February 2017
Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures.
View Article and Find Full Text PDFThe Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200-400 kDa that co-immunopurify with Cox6p.
View Article and Find Full Text PDFCaspases are proteases that initiate and execute apoptotic cell death. These caspase-dependent events are caused by cleavage of specific substrates that propagate the proapoptotic signal. A number of techniques have been developed to follow caspase activity in vitro and from apoptotic cellular extracts.
View Article and Find Full Text PDFProteomic approaches have been adopted to survey the degradome of caspases during apoptosis. These approaches provide a comprehensive list of substrates and give clues to which pathways are altered during apoptosis by activated caspases. However, substrates identified by large-scale proteomic screening need to be validated as bona fide caspase targets.
View Article and Find Full Text PDFSmall-molecule inhibitors of caspases can be modified with moieties such as biotin or fluorescent molecules. After the inhibitor molecule has bound to an active caspase, the caspase itself becomes labeled and can be isolated using affinity purification. This protocol describes the use of the biotinylated pan-caspase inhibitor VAD-FMK and streptavidin beads to isolate active caspases.
View Article and Find Full Text PDFA number of antibodies have been generated that recognize caspases from mammalian model organisms. These include antibodies that recognize specific caspase pro-forms and others that bind caspase cleavage fragments. These antibodies are excellent reagents for identifying which executioner caspases have been activated following application or induction of a specific apoptotic stimulus.
View Article and Find Full Text PDFMonitoring the activity of a caspase, either as an isolated protein or in a complex mixture (e.g., a cytosolic extract), can be achieved by measuring substrate cleavage.
View Article and Find Full Text PDFCold Spring Harb Protoc
July 2014
It can be useful to explore the caspase activation process in an in vitro setting. In this protocol, cytosolic extracts prepared from cell culture are incubated with cytochrome c and adenosine triphosphate (dATP), leading to the oligomerization of apoptotic protease activating factor-1 (APAF-1) and the formation of the apoptosome. The apoptosome serves as an activation platform for caspase-9, which binds to the apoptosome through heterodimeric caspase recruitment domain (CARD) interactions and then dimerizes.
View Article and Find Full Text PDFYeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis.
View Article and Find Full Text PDFMitochondrial-encoded Cox1p, one of the three core subunits of yeast cytochrome oxidase (COX), was previously shown to associate with regulatory proteins and nuclear-encoded subunits into five high molecular weight complexes that were proposed to constitute the pathway for biogenesis of the Cox1p assembly module. One of the intermediates (D5) was inferred, but not directly shown to exist. In the present study mitochondria of strains expressing C-terminal-tagged subunits of COX that had not been looked at previously were pulse-labeled and analyzed for the presence of newly translated Cox1p in the immunoprecipitates.
View Article and Find Full Text PDFCox14p and Coa3p have been shown to regulate translation of the mitochondrial COX1 mRNA and to be required for assembly of cytochrome oxidase. We present evidence that Cox14p and Coa3p stabilize previously identified Cox1p intermediates and that in the absence of either protein, Cox1p aggregates with itself and other mitochondrial gene products, including cytochrome b, Var1p and Cox2p. Our evidence suggests that Cox1p assembly intermediates are in close proximity to other mitochondrially translated proteins and that an important function of Cox14p and Coa3p is to prevent Cox1 from entering into unproductive aggregation pathways.
View Article and Find Full Text PDFPrevious studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high-molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits.
View Article and Find Full Text PDFThe mitochondrial pathway of apoptosis is the major mechanism of physiological cell death in vertebrates. In this pathway, proapoptotic members of the Bcl-2 family cause mitochondrial outer membrane permeabilization (MOMP), allowing the release of cytochrome c, which interacts with Apaf-1 to trigger caspase activation and apoptosis. Despite conservation of Bcl-2, Apaf-1, and caspases in invertebrate phyla, the existence of the mitochondrial pathway in any invertebrate is, at best, controversial.
View Article and Find Full Text PDFMitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation.
View Article and Find Full Text PDFMitochondrial translation of the Saccharomyces cerevisiae Atp6p subunit of F(1)-F(0) ATP synthase is regulated by the F(1) ATPase. Here we show normal expression of Atp6p in HeLa cells depleted of the F(1) β subunit. Instead of being translationally down-regulated, HeLa cells lacking F(1) degrade Atp6p, thereby preventing proton leakage across the inner membrane.
View Article and Find Full Text PDFCaspase-2 is an initiator caspase activated in response to heat shock and other stressors that induce apoptosis. Activation of caspase-2 requires induced proximity resulting after recruitment to caspase-2 activation complexes such as the PIDDosome. We have adapted bimolecular fluorescence complementation (BiFC) to measure caspase-2 induced proximity in real time in single cells.
View Article and Find Full Text PDFActivation of 'initiator' (or 'apical') caspases-2, -8 or -9 (refs 1-3) is crucial for induction of apoptosis. These caspases function to activate executioner caspapses that, in turn, orchestrate apoptotic cell death. Here, we show that a cell-permeable, biotinylated pan-caspase inhibitor (bVAD-fmk) both inhibited and 'trapped' the apical caspase activated when apoptosis was triggered.
View Article and Find Full Text PDFOpening of the mitochondrial permeability transition pore (MPTP) is sensitized to [Ca(2+)] by oxidative stress (diamide) and phenylarsine oxide (PAO). We have proposed that both agents cross-link two thiol groups on the adenine nucleotide translocase (ANT) involved in ADP and cyclophilin-D (CyP-D) binding. Here, we demonstrate that blocking Cys(160) with 80 microM eosin 5-maleimide (EMA) or 500 microM N-ethylmaleimide (NEM) greatly decreased ADP inhibition of the MPTP.
View Article and Find Full Text PDF