Publications by authors named "Gavin P Grant"

Self-sustained smouldering combustion presents strong potential as a green waste-to-energy technique for a range of wastes, especially those with high moisture content like wastewater sewage sludge. While well-demonstrated in laboratory experiments, there is little known about scaling up this process to larger, commercial reactors. This paper addresses this knowledge gap by systematically conducting and analyzing experiments in a variety of reactors extending beyond the laboratory scale.

View Article and Find Full Text PDF

Self-sustained Treatment for Active Remediation (STAR) is a thermal remediation technology that uses smouldering, a flameless form of combustion, for destroying organic contaminants in soil. Injected cold air flowing through the soil to the treatment zone supports the release of sufficient energy to maintain a self-sustained reaction and the propagation of the reaction through the contaminated zone as long as the airflow local to the reaction exceeds a minimum value. However, the distribution and magnitude of air flux vectors can be complex in the heterogeneous environment common at contaminated sites.

View Article and Find Full Text PDF

Growing stockpiles of waste oil sludge (WOS) are an outstanding problem worldwide. Self-sustaining Treatment for Active Remediation applied ex situ (STARx) is a treatment technology based on smoldering combustion. Pilot-scale experiments for the STARx Hottpad prove this new concept for the mobile treatment of WOS mixed intentionally with sand or contaminated soil.

View Article and Find Full Text PDF

Managing biosolids, the major by-product from wastewater treatment plants (WWTPs), persists as a widespread challenge that often constitutes the majority of WWTP operating costs. Self-sustained smouldering combustion is a new approach for organic waste treatment, in which the waste - the combustion fuel - is destroyed in an energy efficient manner after mixing it with sand. Smouldering has never been applied to biosolids.

View Article and Find Full Text PDF

Self-sustaining treatment for active remediation (STAR) is an emerging, smoldering-based technology for nonaqueous-phase liquid (NAPL) remediation. This work presents the first in situ field evaluation of STAR. Pilot field tests were performed at 3.

View Article and Find Full Text PDF

A fixed-volume release of 1,2-DCE, tracked in space and time with a light transmission/image analysis system, provided a data set for the infiltration, redistribution, and immobilisation of a dense non-aqueous phase liquid (DNAPL) in a heterogeneous porous medium. The two-dimensional bench scale flow cell was packed with a spatially correlated, random heterogeneous distribution of six sand types. In order to provide the necessary modelling parameters, detailed constitutive relationships were measured at the local scale for the six sands.

View Article and Find Full Text PDF

Flow-through column tests were conducted to investigate the performance of iron wall remediation systems for the degradation of aqueous-phase trichloroethylene (TCE). Concentration profiles under steady-state transport conditions were generated by measuring TCE concentrations at sample ports located at various locations along the length of the column. The results indicated that a pseudo-first-order model is adequate at describing degradation kinetics for low initial TCE concentrations, but not for higher initial concentrations.

View Article and Find Full Text PDF