Ibogaine is a psychedelic alkaloid being investigated as a possible treatment for opioid use disorder. Ibogaine has a multi-receptor profile with affinities for mu and kappa opioid as well as NMDA receptors amongst others. Due to the sparsity of research into ibogaine's effects on white matter integrity and given the growing evidence that opioid use disorder is characterized by white matter pathology, we set out to investigate ibogaine's effects on two markers of myelination, 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and myelin basic protein (MBP).
View Article and Find Full Text PDFAn ongoing challenge in HIV-1 vaccine research is finding a novel HIV-1 envelope glycoprotein (Env)-based immunogen that elicits broadly cross-neutralizing antibodies (bnAbs) without requiring complex sequential immunization regimens to drive the required antibody affinity maturation. Previous vaccination studies have shown monomeric Env and Env trimers which contain the GCN4 leucine zipper trimerization domain and are covalently bound to the first two domains of CD4 (2dCD4) generate potent bnAbs in small animals. Since SOSIP.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) mediates host cell infection by binding to the cellular receptor CD4. Recombinant Env bound to CD4 has been explored for its potential as an HIV vaccine immunogen as receptor binding exposes otherwise shielded, conserved functional sites. Previous preclinical studies showed an interchain disulphide linkage facilitated between Env and 2dCD4 generates an immunogenic complex that elicits potent, broadly neutralizing antibodies (bNAbs) against clinically relevant HIV-1.
View Article and Find Full Text PDFThe β-subunit of the human eukaryotic elongation factor 1 complex (heEF1β) plays a central role in the elongation step in eukaryotic protein biosynthesis, which essentially involves interaction with the α- and γ-subunits (eEF1γ). To biophysically characterize heEF1β, we constructed 3 Escherichia coli expression vector systems for recombinant expression of the full length (FL-heEF1β), N-terminus (NT-heEF1β), and the C-terminus (CT-heEF1β) regions of the protein. Our results suggest that heEF1β is predominantly alpha-helical and possesses an accessible hydrophobic cavity in the CT-heEF1β.
View Article and Find Full Text PDFCD4, a membrane glycoprotein expressed by specific leukocytes, plays a vital role in the human immune response and acts as a primary receptor for HIV entry. Of its four ecto-domains (D1-D4), D1, D2, and D4 each contain a distinctive disulfide bond. Whereas the disulfides of D1 and D4 are more traditional in nature, providing structural functions, that of D2 is referred to as an "allosteric" disulfide due to its high dihedral strain energy and relative ease of reduction that is thought to regulate CD4 structure and function by shuffling its redox state.
View Article and Find Full Text PDFCD4 is expressed on the surface of specific leukocytes where it plays a key role in the activation of immunostimulatory T-cells and acts as a primary receptor for HIV-1 entry. CD4 has four ecto-domains (D1-D4) of which D1, D2, and D4 contain disulfide bonds. Although disulfide bonds commonly serve structural or catalytic functions, a rare class of disulfide bonds possessing unusually high dihedral strain energy and a relative ease of reduction can impact protein function by shuffling their redox state.
View Article and Find Full Text PDFMany studies have characterized how changes to the stability and internal motions of a protein during activation can contribute to their catalytic function, even when structural changes cannot be observed. Here, unfolding studies and hydrogen-deuterium exchange (HX) mass spectrometry were used to investigate the changes to the stability and conformation/conformational dynamics of JNK1β1 induced by phosphorylative activation. Equivalent studies were also employed to determine the effects of nucleotide binding on both inactive and active JNK1β1 using the ATP analogue, 5'-adenylyl-imidodiphosphate (AMP-PNP).
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2013
JNK1 is activated by phosphorylation of the canonical T183 and Y185 residues, modifications that are catalysed typically by the upstream eukaryotic kinases MKK4 and MKK7. Nonetheless, the exact sites at which the most abundant JNK variant, JNK1β1, is further modified by MKK4 for phospho-regulation has not been previously investigated. Aiming to characterise the nature of JNK1β1 phosphorylation by active MKK4 using mass spectrometry, a recognised yet uncharacterised phospho-site (S377) as well as two novel phospho-residues (T228 and S284) were identified.
View Article and Find Full Text PDFThe c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively.
View Article and Find Full Text PDFCell Mol Neurobiol
August 2012
A consolidated map of the signalling pathways that function in the formation of short- and long-term cellular memory could be considered the ultimate means of defining the molecular basis of learning. Research has established that experience-dependent activation of these complex cellular cascades leads to many changes in the composition and functioning of a neuron's proteome, resulting in the modulation of its synaptic strength and structure. However, although generally accepted that synaptic plasticity is the mechanism whereby memories are stored in the brain, there is much controversy over whether the site of this neuronal memory expression is predominantly pre- or postsynaptic.
View Article and Find Full Text PDF