Publications by authors named "Gavin Oliver"

Background: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome.

View Article and Find Full Text PDF

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting.

View Article and Find Full Text PDF

Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2.

View Article and Find Full Text PDF

Familiarity and face inversion not only affect face recognition and memory but also influence attention. Face processing is less attention-demanding for familiar than for unfamiliar faces and for upright than for inverted faces. The automaticity raises the question of how face processing interacts with an increase in attention.

View Article and Find Full Text PDF
Article Synopsis
  • Detecting gene fusions, especially those involving driver oncogenes, is crucial for the clinical diagnosis and treatment of cancer, and advancements in next-generation sequencing (NGS) have improved detection methods.
  • Traditional informatics methods for detecting gene fusions in RNA sequencing face challenges, including low-quality alignments and scalability issues, highlighting the need for better solutions.
  • SeekFusion is introduced as an efficient and accurate pipeline specifically designed for detecting gene fusions in targeted PCR-based NGS, demonstrating superior performance compared to existing methods and successfully analyzing samples from 4,484 patients with neurological tumors and sarcomas.
View Article and Find Full Text PDF

Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death. The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment.

View Article and Find Full Text PDF

Motivation: Genomic data are prevalent, leading to frequent encounters with uninterpreted variants or mutations with unknown mechanisms of effect. Researchers must manually aggregate data from multiple sources and across related proteins, mentally translating effects between the genome and proteome, to attempt to understand mechanisms.

Materials And Methods: PT presents diverse data and annotation types in a unified protein-centric view, facilitating the interpretation of coding variants and hypothesis generation.

View Article and Find Full Text PDF

Gestational trophoblastic disease (GTD) is a heterogeneous group of lesions arising from placental tissue. Epithelioid trophoblastic tumor (ETT), derived from chorionic-type trophoblast, is the rarest form of GTD with only approximately 130 cases described in the literature. Due to its morphologic mimicry of epithelioid smooth muscle tumors and carcinoma, ETT can be misdiagnosed.

View Article and Find Full Text PDF

Purpose: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing.

View Article and Find Full Text PDF

Background: RNA polymerase III (Pol III)-related disorders are autosomal recessive neurodegenerative disorders caused by variants in POLR3A or POLR3B. Recently, a novel phenotype of adult-onset spastic ataxia was identified in individuals with the c.1909+22G>A POLR3A variant in compound heterozygosity.

View Article and Find Full Text PDF

Motivation: Next-generation sequencing is rapidly improving diagnostic rates in rare Mendelian diseases, but even with whole genome or whole exome sequencing, the majority of cases remain unsolved. Increasingly, RNA sequencing is being used to solve many cases that evade diagnosis through sequencing alone. Specifically, the detection of aberrant splicing in many rare disease patients suggests that identifying RNA splicing outliers is particularly useful for determining causal Mendelian disease genes.

View Article and Find Full Text PDF

Several recent studies have demonstrated the utility of RNA-Seq in the diagnosis of rare inherited disease. Diagnostic rates 35% higher than those previously achievable with DNA-Seq alone have been attained. These studies have primarily profiled gene expression and splicing defects, however, some have also shown that fusion transcripts are diagnostic or phenotypically relevant in patients with constitutional disorders.

View Article and Find Full Text PDF

Trichorhinophalangeal syndrome type I (TRPSI) is a rare disorder that causes distinctive ectodermal, facial, and skeletal features affecting the hair (tricho-), nose (rhino-), and fingers and toes (phalangeal) and is inherited in an autosomal dominant pattern. TRPSI is caused by loss of function variants in , involved in the regulation of chondrocyte and perichondrium development. Pathogenic variants in include missense mutations and deletions with variable breakpoints, with only a single instance of an intragenic duplication reported to date.

View Article and Find Full Text PDF

Background: RNA sequencing has been proposed as a means of increasing diagnostic rates in studies of undiagnosed rare inherited disease. Recent studies have reported diagnostic improvements in the range of 7.5-35% by profiling splicing, gene expression quantification and allele specific expression.

View Article and Find Full Text PDF

Background: We describe a patient presenting with pachygyria, epilepsy, developmental delay, short stature, failure to thrive, facial dysmorphisms, and multiple osteochondromas.

Methods: The patient underwent extensive genetic testing and analysis in an attempt to diagnose the cause of his condition. Clinical testing included metaphase karyotyping, array comparative genomic hybridization, direct sequencing and multiplex ligation-dependent probe amplification and trio-based exome sequencing.

View Article and Find Full Text PDF

Whole exome sequencing (WES) is utilized in diagnostic odyssey cases to identify the underlying genetic cause associated with complex phenotypes. Recent publications suggest that WES reveals the genetic cause in ~25% of these cases and is most successful when applied to children with neurological disease. The residual 75% of cases remain genetically elusive until more information becomes available in the literature or functional studies are pursued.

View Article and Find Full Text PDF

Demand is increasing for clinical genomic sequencing to provide diagnoses for patients presenting phenotypes indicative of genetic diseases, but for whom routine genetic testing failed to yield a diagnosis. DNA-based testing using high-throughput technologies often identifies variants with insufficient evidence to determine whether they are disease-causal or benign, leading to categorization as variants of uncertain significance (VUS). We used molecular modeling and simulation to generate specific hypotheses for the molecular effects of variants in the human glucose transporter, GLUT10 ().

View Article and Find Full Text PDF

We assessed the performance characteristics of an RNA sequencing (RNA-Seq) assay designed to detect gene fusions in 571 genes to help manage patients with cancer. Polyadenylated RNA was converted to cDNA, which was then used to prepare next-generation sequencing libraries that were sequenced on an Illumina HiSeq 2500 instrument and analyzed with an in-house developed bioinformatic pipeline. The assay identified 38 of 41 gene fusions detected by another method, such as fluorescence in situ hybridization or RT-PCR, for a sensitivity of 93%.

View Article and Find Full Text PDF

Recent studies have offered ample insight into genome-wide expression patterns to define pancreatic ductal adenocarcinoma (PDAC) subtypes, although there remains a lack of knowledge regarding the underlying epigenomics of PDAC. Here we perform multi-parametric integrative analyses of chromatin immunoprecipitation-sequencing (ChIP-seq) on multiple histone modifications, RNA-sequencing (RNA-seq), and DNA methylation to define epigenomic landscapes for PDAC subtypes, which can predict their relative aggressiveness and survival. Moreover, we describe the state of promoters, enhancers, super-enhancers, euchromatic, and heterochromatic regions for each subtype.

View Article and Find Full Text PDF

Purpose: We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative.

View Article and Find Full Text PDF

We previously reported an extremely rare case of follicular dendritic cell sarcoma (FDCS) presented as a thyroid mass. Given the rarity of this disease, there are no personalized and molecularly targeted treatment options due to the lack of knowledge in the genomic makeup of the tumor. A 44-year-old white woman was diagnosed with an extranodal FDCS in thyroid.

View Article and Find Full Text PDF

TGF-β-related heritable connective tissue disorders are characterized by a similar pattern of cardiovascular defects, including aortic root dilatation, mitral valve prolapse, vascular aneurysms, and vascular dissections and exhibit incomplete penetrance and variable expressivity. Because of the phenotypic overlap of these disorders, panel-based genetic testing is frequently used to confirm the clinical findings. Unfortunately in many cases, variants of uncertain significance (VUSs) obscure the genetic diagnosis until more information becomes available.

View Article and Find Full Text PDF

Background: The ability to analyze the genomics of malignancies has opened up new possibilities for off-label targeted therapy in cancers that are refractory to standard therapy. At Mayo Clinic these efforts are organized through the Center for Individualized Medicine (CIM).

Results: Prior to GTB, datasets were analyzed and integrated by a team of bioinformaticians and cancer biologists.

View Article and Find Full Text PDF