SARM1 is a Toll-IL-1 receptor (TIR) domain-containing protein with roles in innate immunity and neuronal death in diverse organisms. Unlike other innate immune TIR proteins that function as adaptors for Toll-like receptors (TLRs), SARM1 has NADase activity, and this activity regulates murine neuronal cell death. However, whether human SARM1, and its NADase activity, are involved in innate immune regulation remains unclear.
View Article and Find Full Text PDFSterile alpha and HEAT/armadillo motif-containing protein (SARM1) was recently described as a NAD-consuming enzyme and has previously been shown to regulate immune responses in macrophages. Neuronal SARM1 is known to contribute to axon degeneration due to its NADase activity. However, how SARM1 affects macrophage metabolism has not been explored.
View Article and Find Full Text PDFSystem-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell.
View Article and Find Full Text PDFMitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation.
View Article and Find Full Text PDFMitochondrial dysfunction is a recognized hallmark of neurodegenerative diseases and abnormal mitochondrial fusion-fission dynamics have been implicated in the pathogenesis of neurodegenerative disorders. This study characterizes the effects of metabolic flux inhibitors and activators on mitochondrial fusion dynamics in the neuronal cell culture model of differentiated PC12 cells. Using a real time confocal microscopy assay, it was found that the carnitine palmitoyltransferase I (CPTI) inhibitor, etomoxir, reduced mitochondrial fusion dynamics in a time-dependent manner.
View Article and Find Full Text PDF