Publications by authors named "Gavin King"

Halide perovskites are hailed as semiconductors of the 21 century. Chemical vapor deposition (CVD), a solvent-free method, allows versatility in the growth of thin films of 3- and 2D organic-inorganic halide perovskites. Using CVD grown methylammonium lead iodide (MAPbI) films as a prototype, the impact of electron beam dosage under cryogenic conditions is evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Candidalysin, produced by Candida albicans, is a virulence factor that damages host cells, and this study identified specific genes related to glycosaminoglycan (GAG) biosynthesis that, when disrupted, confer resistance to this damage.
  • Researchers found that candidalysin binds to sulfated GAGs on the host cell surface, which helps it to cause damage, but adding exogenous sulfated GAGs like dextran sulfate can protect cells and inhibit candidalysin's effects.
  • In a mouse model of vulvovaginal candidiasis, applying dextran sulfate reduced tissue damage and inflammation, suggesting sulfated GAGs are potential therapeutic targets to counteract candidalysin-related damage.
View Article and Find Full Text PDF

Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Candidalysin, a peptide from a fungal pathogen, is crucial for causing disease in models of candidiasis and targets host cells, but its exact interactions were unclear.
  • A study using CRISPR identified genes involved in the production of glycosaminoglycans (GAGs) as key factors for cell susceptibility to candidalysin, highlighting the importance of GAGs in the cell's defense.
  • Researchers found that adding sulfated GAGs protected cells from damage caused by candidalysin and that this protection also reduced inflammation in animal models, suggesting potential therapeutic applications.
View Article and Find Full Text PDF

Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution.

View Article and Find Full Text PDF

This paper demonstrates an optical technique to measure magnetostrictive strain in a cryogenic environment using a Fabry-Pérot resonator spaced by crystal samples. Optical measurement techniques are calibration-free and highly sensitive. This technique was used to measure the magnetostrictive strain of neodymium gallate at a temperature of 49 mK to be λ = 1.

View Article and Find Full Text PDF

The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios.

View Article and Find Full Text PDF

Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift.

View Article and Find Full Text PDF

P-glycoprotein (Pgp) plays a pivotal role in drug bioavailability and multi-drug resistance development. Understanding the protein's activity and designing effective drugs require insight into the mechanisms underlying Pgp-mediated transport of xenobiotics. In this study, we investigated the drug-induced conformational changes in Pgp and adopted a conformationally-gated model to elucidate the Pgp-mediated transport of camptothecin analogs (CPTs).

View Article and Find Full Text PDF

Periarticular infiltration following total knee and hip arthroplasty has been demonstrated to be equivalent to peripheral nerve blocks for postoperative pain management. The ideal cocktail has not been established yet. We have conducted a literature search on PubMed and Embase.

View Article and Find Full Text PDF

Basic Multicellular Units (BMUs) conduct bone remodeling, a critical process of tissue turnover which, if imbalanced, can lead to disease, including osteoporosis. Parathyroid hormone (PTH 1-34; Teriparatide) is an osteoanabolic treatment for osteoporosis; however, it elevates the rate of intra-cortical remodeling (activation frequency) leading, at least transiently, to increased porosity. The purpose of this study was to test the hypothesis that PTH not only increases the rate at which cortical BMUs are initiated but also increases their progression (Longitudinal Erosion Rate; LER).

View Article and Find Full Text PDF

Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding.

View Article and Find Full Text PDF

The translocation of specific polypeptide chains across membranes is an essential activity for all life forms. The main components of the general secretory (Sec) system of include integral membrane translocon SecYEG, peripheral ATPase SecA, and SecDF, an ancillary complex that enhances polypeptide secretion by coupling translocation to proton motive force. Atomic force microscopy (AFM), a single-molecule imaging technique, is well suited to unmask complex, asynchronous molecular activities of membrane-associated proteins including those comprising the Sec apparatus.

View Article and Find Full Text PDF

The solution processability of organic semiconductors and conjugated polymers along with the advent of nanomaterials as conducting inks have revolutionized next-generation flexible consumer electronics. Another equally important class of nanomaterials, self-assembled peptides, heralded as next-generation materials for bioelectronics, have a lot of potential in printed technology. In this minireview, we address the self-assembly process in dipeptides, their application in electronics, and recent progress in three-dimensional printing.

View Article and Find Full Text PDF

causes severe invasive candidiasis. infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear.

View Article and Find Full Text PDF

Intrinsic apoptosis is orchestrated by a group of proteins that mediate the coordinated disruption of mitochondrial membranes. Bax is a multi-domain protein that, upon activation, disrupts the integrity of the mitochondrial outer membrane by forming pores. We strategically introduced glutamic acids into a short sequence of the Bax protein that constitutively creates membrane pores.

View Article and Find Full Text PDF

Atomic force microscopy has emerged as a valuable complementary technique in membrane structural biology. The apparatus is capable of probing individual membrane proteins in fluid lipid bilayers at room temperature with spatial resolution at the molecular length scale. Protein conformational dynamics are accessible over a range of biologically relevant timescales.

View Article and Find Full Text PDF

Protein-lipid interfaces are among the most fundamental in biology. Yet applying conventional techniques to study the biophysical attributes of these systems is challenging and has left many unknowns. For example, what is the kinetic pathway and energy landscape experienced by a polypeptide chain when in close proximity to a fluid lipid bilayer? Here we review the experimental and theoretical progress we have made in addressing this question from a single molecule perspective.

View Article and Find Full Text PDF

Cortical bone porosity is intimately linked with remodeling, is of growing clinical interest, and is increasingly accessible by imaging. Thus, the potential of animal models of osteoporosis (OP) to provide a platform for studying how porosity develops and responds to interventions is tremendous. To date, rabbit models of OP have largely focused on trabecular microarchitecture or bone density; some such as ovariectomy (OVX) have uncertain efficacy and cortical porosity has not been extensively reported.

View Article and Find Full Text PDF

Quantitative characterization of the strength of peripheral membrane protein-lipid bilayer interactions is fundamental in the understanding of many protein targeting pathways. SecA is a peripheral membrane protein that plays a central role in translocating precursor proteins across the inner membrane of . The membrane binding activity of the extreme N-terminus of SecA is critical for translocase function.

View Article and Find Full Text PDF

Surface-supported lipid bilayers are used widely throughout the nanoscience community as cellular membrane mimics. For example, they are frequently employed in single-molecule atomic force microscopy (AFM) studies to shed light on membrane protein conformational dynamics and folding. However, in AFM as well as in other surface-sensing techniques, the close proximity of the supporting surface raises questions about preservation of the biochemical activity.

View Article and Find Full Text PDF

exports proteins via a translocase comprising SecA and the translocon, SecYEG. Structural changes of active translocases underlie general secretory system function, yet directly visualizing dynamics has been challenging. We imaged active translocases in lipid bilayers as a function of precursor protein species, nucleotide species, and stage of translocation using atomic force microscopy (AFM).

View Article and Find Full Text PDF

Using synthetic molecular evolution, we previously discovered a family of peptides that cause macromolecular poration in synthetic membranes at low peptide concentration in a way that is triggered by acidic pH. To understand the mechanism of action of these "pHD peptides", here we systematically explored structure-function relationships through measurements of the effect of pH and peptide concentration on membrane binding, peptide structure, and the formation of macromolecular-sized pores in membranes. Both AFM and functional assays demonstrate the peptide-induced appearance of large pores in bilayers.

View Article and Find Full Text PDF

Based on a well-preserved specimen from Eocene Baltic amber, the second fossil species belonging to the genus Pycnomerus Erichson (Coleoptera: Zopheridae: Zopherinae), P. agtsteinicus Bukejs, Alekseev McKellar sp. nov.

View Article and Find Full Text PDF