Imidazoquinolines (IMDs), such as resiquimod (R848), are of great interest as potential cancer immunotherapies because of their ability to activate Toll-like receptor 7 (TLR7) and/or TLR8 on innate immune cells. Nevertheless, intravenous administration of IMDs causes severe immune-related toxicities, and attempts to improve their tissue-selective exposure while minimizing acute systemic inflammation have proven difficult. Here, using a library of R848 "bottlebrush prodrugs" (BPDs) that differ only by their R848 release kinetics, we explore how the timing of R848 exposure affects immune stimulation in vitro and in vivo.
View Article and Find Full Text PDFExpanded helicenes are an emerging class of helical nanocarbons composed of alternating linear and angularly fused rings, which give rise to an internal cavity and a large diameter. The latter is expected to impart exceptional chiroptical properties, but low enantiomerization free energy barriers (Δ) have largely precluded experimental interrogation of this prediction. Here, we report the syntheses of expanded helicenes containing 15, 19, and 23 rings on the inner helical circuit, using two iterations of an Ir-catalyzed, site-selective [2 + 2 + 2] reaction.
View Article and Find Full Text PDFMany common polymers, especially vinyl polymers, are inherently difficult to chemically recycle and are environmentally persistent. The introduction of low levels of cleavable comonomer additives into existing vinyl polymerization processes could facilitate the production of chemically deconstructable and recyclable variants with otherwise equivalent properties. Here, we report thionolactones that serve as cleavable comonomer additives for the chemical deconstruction and recycling of vinyl polymers prepared through free radical polymerization, using polystyrene (PS) as a model example.
View Article and Find Full Text PDFThe synthesis of polycyclic aromatic hydrocarbons (PAHs) and related nanographenes requires the selective and efficient fusion of multiple aromatic rings. For this purpose, the Diels-Alder cycloaddition has proven especially useful; however, this approach currently faces significant limitations, including the lack of versatile strategies to access annulated dienes, the instability of the most commonly used dienes, and difficulties with aromatization of the [4 + 2] adduct. In this report we address these limitations the marriage of two powerful cycloaddition strategies.
View Article and Find Full Text PDFCarbon nanobelts are molecules of high fundamental and technological interest due to their structural similarity to carbon nanotubes, of which they are molecular cutouts. Despite this attention, synthetic accessibility is a major obstacle, such that the few known strategies offer limited structural diversity, functionality, and scalability. To address this bottleneck, we have developed a new strategy that utilizes highly fused monomer units constructed via a site-selective [2 + 2 + 2] cycloaddition and a high-yielding zirconocene-mediated macrocyclization to achieve the synthesis of a new carbon nanobelt on large scale with the introduction of functional handles in the penultimate step.
View Article and Find Full Text PDFPentacene's extraordinary photophysical and electronic properties are highly dependent on intermolecular through-space interactions. Macrocyclic arrangements of chromophores have been shown to provide a high level of control over these interactions, but few examples exist for pentacene due to inherent synthetic challenges. In this work, zirconocene-mediated alkyne coupling was used as a dynamic covalent C-C bond forming reaction to synthesize two geometrically distinct, pentacene-containing macrocycles on a gram scale and in four or fewer steps.
View Article and Find Full Text PDFSolid-state packing plays a defining role in the properties of a molecular organic material, but it is difficult to elucidate in the absence of single crystals that are suitable for X-ray diffraction. Herein, we demonstrate the coupling of divergent synthesis with microcrystal electron diffraction (MicroED) for rapid assessment of solid-state packing motifs, using a class of chiral nanocarbons-expanded helicenes-as a proof of concept. Two highly selective oxidative dearomatizations of a readily accessible helicene provided a divergent route to four electron-deficient analogues containing quinone or quinoxaline units.
View Article and Find Full Text PDFExpanded helicenes are large, structurally flexible π-frameworks that can be viewed as building blocks for more complex chiral nanocarbons. Here we report a gram-scale synthesis of an alkyne-functionalized expanded [11]helicene and its single-step transformation into two structurally and functionally distinct types of macrocyclic derivatives: (1) a figure-eight dimer via alkyne metathesis (also gram scale) and (2) two arylene-bridged expanded helicenes via Zr-mediated, formal [2+2+] cycloadditions. The phenylene-bridged helicene displays a substantially higher enantiomerization barrier (22.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are attractive synthetic building blocks for more complex conjugated nanocarbons, but their use for this purpose requires appreciable quantities of a PAH with reactive functional groups. Despite tremendous recent advances, most synthetic methods cannot satisfy these demands. Here we present a general and scalable [2 + 2 + ] ( = 1 or 2) cycloaddition strategy to access PAHs that are decorated with synthetically versatile alkynyl groups and its application to seven structurally diverse PAH ring systems (thirteen new alkynylated PAHs in total).
View Article and Find Full Text PDFA general synthetic strategy for the construction of large, nitrogen-containing polycyclic aromatic hydrocarbons (PAHs) is reported. The strategy involves two key steps: (1) a titanocene-mediated reductive cyclization of an oligo(dinitrile) precursor to form a PAH appended with di(aza)titanacyclopentadiene functionality; (2) a divergent titanocene transfer reaction, which allows final-step installation of one or more o-quinone, diazole, or pyrazine units into the PAH framework. The new methodology enables rational, late-stage control of HOMO and LUMO energy levels and thus photophysical and electrochemical properties, as revealed by UV/vis and fluorescence spectroscopy, cyclic voltammetry, and DFT calculations.
View Article and Find Full Text PDFA divergent synthetic strategy allowed access to several members of a new class of helicenes, the "expanded helicenes", which are composed of alternating linearly and angularly fused rings. The strategy is based on a three-fold, partially intermolecular [2+2+n] (n = 1 or 2) cycloaddition with substrates containing three diyne units. Investigation of aggregation behavior, both in solution and in the solid state, revealed that one of these compounds forms an unusual homochiral, π-stacked dimer via an equilibrium that is slow on the NMR time scale.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2017
Syntheses of large polycyclic aromatic hydrocarbons (PAHs) and graphene nanostructures demand methods that are capable of selectively and efficiently fusing large numbers of aromatic rings, yet such methods remain scarce. Herein, we report a new approach that is based on the quantitative intramolecular reductive cyclization of an oligo(diyne) with a low-valent zirconocene reagent, which gives a PAH with one or more annulated zirconacyclopentadienes (ZrPAHs). The efficiency of this process is demonstrated by a high-yielding fivefold intramolecular coupling to form a helical ZrPAH with 16 fused rings (from a precursor with no fused rings).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2012
Encaged! Three-terminal interlocked molecular species were obtained by dynamic (2+3) assembly of a cagelike macro-bicycle around a trifurcated trispyridinium π guest. The complex is stabilized by π-π interactions and multiple [C-H⋅⋅⋅O] and [C-H⋅⋅⋅N] interactions. Uncomplexed guest molecules cocrystallize alongside the threaded complexes in the solid state, thus giving extended π-stacked columns.
View Article and Find Full Text PDF