Publications by authors named "Gavin Huttley"

The algorithms for phylogenetic reconstruction are central to computational molecular evolution. The relentless pace of data acquisition has exposed their poor scalability and the conclusion that the conventional application of these methods is impractical and not justifiable from an energy usage perspective. Furthermore, the drive to improve the statistical performance of phylogenetic methods produces increasingly parameter-rich models of sequence evolution, which worsens the computational performance.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights DNA methylation's role in gene regulation in cnidarians, particularly in corals, possibly aiding adaptation to stressors like rising seawater temperatures.
  • The study reveals that DNA methylation specifically targets transposons in cnidarians, with younger, more active transposons showing higher levels of methylation.
  • This suggests that the primary function of methylation in these animals may be to protect against genomic damage from transposon activity, reinforcing the idea that DNA methylation is essential for genome defense in diverse invertebrate species.
View Article and Find Full Text PDF

We report work to quantify the impact on the probability of human genome polymorphism both of recombination and of sequence context at different scales. We use population-based analyses of data on human genetic variants obtained from the public Ensembl database. For recombination, we calculate the variance due to recombination and the probability that a recombination event causes a mutation.

View Article and Find Full Text PDF

There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, , CpG hypermutability.

View Article and Find Full Text PDF

Microbiome-based disease classification depends on well-validated disease-specific models or organismal markers. These are lacking for many diseases. Here, we present an alternative, search-based strategy for disease detection and classification, which detects diseased samples via their outlier novelty versus a database of samples from healthy subjects and then compares these to databases of samples from patients.

View Article and Find Full Text PDF

Popular naive Bayes taxonomic classifiers for amplicon sequences assume that all species in the reference database are equally likely to be observed. We demonstrate that classification accuracy degrades linearly with the degree to which that assumption is violated, and in practice it is always violated. By incorporating environment-specific taxonomic abundance information, we demonstrate a significant increase in the species-level classification accuracy across common sample types.

View Article and Find Full Text PDF

Meta-analyses at the whole-community level have been important in microbiome studies, revealing profound features that structure Earth's microbial communities, such as the unique differentiation of microbes from the mammalian gut relative to free-living microbial communities, the separation of microbiomes in saline and nonsaline environments, and the role of pH in driving soil microbial compositions. However, our ability to identify the specific features of a microbiome that differentiate these community-level patterns have lagged behind, especially as ever-cheaper DNA sequencing has yielded increasingly large data sets. One critical gap is the ability to search for samples that contain specific features (for example, sub-operational taxonomic units [sOTUs] identified by high-resolution statistical methods for removing amplicon sequencing errors).

View Article and Find Full Text PDF

Background: Despite the biological and economic significance of scleractinian reef-building corals, the lack of large molecular datasets for a representative range of species limits understanding of many aspects of their biology. Within the Scleractinia, based on molecular evidence, it is generally recognised that there are two major clades, Complexa and Robusta, but the genomic bases of significant differences between them remain unclear.

Results: Draft genome assemblies and annotations were generated for three coral species: Galaxea fascicularis (Complexa), Fungia sp.

View Article and Find Full Text PDF

Many of the challenges we currently face as an advanced society have been solved in unique ways by biological systems. One such challenge is developing strategies to avoid microbial infection. Social aculeates (wasps, bees and ants) mitigate the risk of infection to their colonies using a wide range of adaptations and mechanisms.

View Article and Find Full Text PDF

Background: Taxonomic classification of marker-gene sequences is an important step in microbiome analysis.

Results: We present q2-feature-classifier ( https://github.com/qiime2/q2-feature-classifier ), a QIIME 2 plugin containing several novel machine-learning and alignment-based methods for taxonomy classification.

View Article and Find Full Text PDF

q2-sample-classifier is a plugin for the QIIME 2 microbiome bioinformatics platform that facilitates access, reproducibility, and interpretation of supervised learning (SL) methods for a broad audience of non-bioinformatics specialists.

View Article and Find Full Text PDF

Estimation of natural selection on protein-coding sequences is a key comparative genomics approach for de novo prediction of lineage-specific adaptations. Selective pressure is measured on a per-gene basis by comparing the rate of nonsynonymous substitutions to the rate of synonymous substitutions. All published codon substitution models have been time-reversible and thus assume that sequence composition does not change over time.

View Article and Find Full Text PDF

Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs.

View Article and Find Full Text PDF

Background: Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases.

Methods: The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES.

View Article and Find Full Text PDF

Phenotypic mosaic trees offer an ideal system for studying differential gene expression. We have investigated two mosaic eucalypt trees from two closely related species (Eucalyptus melliodora and E. sideroxylon), which each support two types of leaves: one part of the canopy is resistant to insect herbivory and the remaining leaves are susceptible.

View Article and Find Full Text PDF

Multiple gene duplication events in the precursor of the Aculeata (bees, ants, hornets) gave rise to four silk genes. Whilst these homologs encode proteins with similar amino acid composition and coiled coil structure, the retention of all four homologs implies they each are important. In this study we identified, produced and characterized the four silk proteins from Apis dorsata, the giant Asian honeybee.

View Article and Find Full Text PDF

We report here the first genome assembly and annotation of the human-pathogenic fungus Scedosporium aurantiacum, with a predicted 10,525 genes, and 11,661 transcripts. The strain WM 09.24 was isolated from the environment at Circular Quay, Sydney, New South Wales, Australia.

View Article and Find Full Text PDF

The genetic distance between biological sequences is a fundamental quantity in molecular evolution. It pertains to questions of rates of evolution, existence of a molecular clock, and phylogenetic inference. Under the class of continuous-time substitution models, the distance is commonly defined as the expected number of substitutions at any site in the sequence.

View Article and Find Full Text PDF

Whole-exome sequencing (WES) is a new tool that allows the rapid, inexpensive and accurate exploration of Mendelian and complex diseases, such as obesity. To identify sequence variants associated with obesity, we performed WES of family trios of one male teenager and one female child with severe early-onset obesity. Additionally, the teenager patient had hypopituitarism and hyperprolactinaemia.

View Article and Find Full Text PDF

The emergence of distinct populations of Cryptococcus gattii in the temperate North American Pacific Northwest (PNW) was surprising, as this species was previously thought to be confined to tropical and semitropical regions. Beyond a new habitat niche, the dominant emergent population displayed increased virulence and caused primary pulmonary disease, as opposed to the predominantly neurologic disease seen previously elsewhere. Whole-genome sequencing was performed on 118 C.

View Article and Find Full Text PDF

The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are "naked corals" that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data.

View Article and Find Full Text PDF

Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored.

View Article and Find Full Text PDF

Background: Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvfidkn74abn6km96j6cng86e4umfu3n9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once