Publications by authors named "Gavin Hazell"

Mixtures of sulfobetaine based lipids with phosphocholine phospholipids are of interest in order to study the interactions between zwitterionic surfactants and the phospholipids present in cell membranes. In this study we have investigated the structure of mixed monolayers of sulfobetaines and phosphocholine phospholipids. The sulfobetaine used has a single 18-carbon tail, and is referred to as SB3-18, and the phospholipid used is DMPC.

View Article and Find Full Text PDF

Driven by the potential applications of ionic liquids (ILs) in many emerging electrochemical technologies, recent research efforts have been directed at understanding the complex ion ordering in these systems, to uncover novel energy storage mechanisms at IL-electrode interfaces. Here, we discover that surface-active ILs (SAILs), which contain amphiphilic structures inducing self-assembly, exhibit enhanced charge storage performance at electrified surfaces. Unlike conventional non-amphiphilic ILs, for which ion distribution is dominated by Coulombic interactions, SAILs exhibit significant and competing van der Waals interactions owing to the non-polar surfactant tails, leading to unusual interfacial ion distributions.

View Article and Find Full Text PDF

Hypothesis: Reports on the colloidal and interfacial properties of fluorocarbon (FC) surfactants used in fire-fighting foam formulations are rare. This is primarily because these formulations are complex mixtures of different hydrocarbon (HC) and fluorocarbon (FC) surfactants. By developing a greater understanding of the individual properties of these commercial FC surfactants, links can be made between structure and respective surface/ bulk behaviour.

View Article and Find Full Text PDF

Infections resulting from bacterial biofilm formation on the surface of medical devices are challenging to treat and can cause significant patient morbidity. Recently, it has become apparent that regulation of surface nanotopography can render surfaces bactericidal. In this study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene nanosphere-mask colloidal lithographic process.

View Article and Find Full Text PDF

Hypothesis: Reports of random copolymers capable of solubilising hydrophobic oils are rare. This is primarily because random copolymers are unlikely to self-assemble into suitable aggregates (or micelles) in water. A random copolymer with a "blocky" (or lumpy) microstructure may have potential to solubilise hydrophobic oils in water.

View Article and Find Full Text PDF

For equivalent micellar volume fraction (ϕ), systems containing anisotropic micelles are generally more viscous than those comprising spherical micelles. Many surfactants used in water-in-CO (w/c) microemulsions are fluorinated analogues of sodium bis(2-ethylhexyl) sulfosuccinate (AOT): here it is proposed that mixtures of CO-philic surfactants with hydrotropes and cosurfactants may generate elongated micelles in w/c systems at high-pressures (e.g.

View Article and Find Full Text PDF

Styrene-alt-maleic acid lipid particles (SMALPs) are self-assembled discoidal structures composed of a polymer belt and a segment of lipid bilayer, which are capable of encapsulating membrane proteins directly from the cell membrane. Here we present evidence of the exchange of lipids between such "nanodiscs" and lipid monolayers adsorbed at either solid-liquid or air-liquid interfaces. This behavior has important implications for the potential uses of nanodiscs.

View Article and Find Full Text PDF

Hypothesis: Owing to structural similarities between sulfobetaine lipids and phospholipids it should be possible to form stable Langmuir monolayers from long tail sulfobetaines. By modification of the density of lipid tail group (number of carbon chains) it should also be possible to modulate the two-dimensional phase behaviour of these lipids and thereby compare with that of equivalent phospholipids. Potentially this could enable the use of such lipids for the wide array of applications that currently use phospholipids.

View Article and Find Full Text PDF

An oxygen-rich hydrocarbon (HC) amphiphile has been developed as an additive for supercritical CO2 (scCO2). The effects of this custom-designed amphiphile have been studied in water-in-CO2 (w/c) microemulsions stabilized by analogous fluorocarbon (FC) surfactants, nFG(EO)2, which are known to form spherical w/c microemulsion droplets. By applying contrast-variation small-angle neutron scattering (CV-SANS), evidence has been obtained for anisotropic structures in the mixed systems.

View Article and Find Full Text PDF

Hypothesis: Owing to attractive interactions between negatively charged graphene oxide (GO) and a paramagnetic cationic polyelectrolyte (polyallydimethylammonium chloride with a FeCl4(-) counterion (Fe-polyDADMAC) it should be possible to generate magnetic materials. The benefit of using charge-based adsorption is that the need to form covalently linked magnetic materials is offset, which is expected to significantly reduce the time, energy and cost to make such responsive materials. These systems could have a wide use and application in water treatment.

View Article and Find Full Text PDF

This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants.

View Article and Find Full Text PDF