Publications by authors named "Gavin C Stonehouse"

Selenium (Se) deficiency and toxicity affect over a billion people worldwide. Plants can mitigate both problems, via Se biofortification and phytoremediation. Here we explore the potential of hemp ( L.

View Article and Find Full Text PDF

In these studies we identified and compared the properties of plant species that showed positive or negative co-occurrence with selenium (Se) hyperaccumulators in their natural habitat. The main questions addressed were: which species are most abundant directly adjacent to hyperaccumulators, and which are absent? How do Se accumulation and tolerance compare in species found to positively or negatively co-occur with hyperaccumulators? Approaches included field surveys, X-ray microprobe analysis of field samples, and a lab Se tolerance and accumulation study. When 54 hyperaccumulators across two naturally seleniferous sites were surveyed for their five nearest neighboring species, and the relative abundance of these species around hyperaccumulators compared to that in the overall vegetation, some species were identified to positively or negatively co-occur with hyperaccumulators.

View Article and Find Full Text PDF

Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine.

View Article and Find Full Text PDF

More than a billion people worldwide may be selenium (Se) deficient, and supplementation with Se-rich Brazil nuts may be a good strategy to prevent deficiency. Since different forms of Se have different nutritional value, and Se is toxic at elevated levels, careful seed characterization is important. Variation in Se concentration and correlations of this element with other nutrients were found in two batches of commercially available nuts.

View Article and Find Full Text PDF