Clinical chelation therapy of mercury poisoning generally uses one or both of two drugs--meso-dimercaptosuccinic acid (DMSA) and dimercaptopropanesulfonic acid (DMPS), commercially sold as Chemet and Dimaval, respectively. We have used a combination of mercury L(III)-edge X-ray absorption spectroscopy and density functional theory calculations to investigate the chemistry of interaction of mercuric ions with each of these chelation therapy drugs. We show that neither DMSA nor DMPS forms a true chelate complex with mercuric ions and that these drugs should be considered suboptimal for their clinical task of binding mercuric ions.
View Article and Find Full Text PDFThe improvised explosive triacetone triperoxide (TATP) was synthesized and characterized by 1H-nuclear magnetic resonance (NMR), 13C-NMR, Raman and infrared (IR) spectroscopy. Triacetone triperoxide was subsequently analyzed by ion mobility spectrometry (IMS) in positive ion mode, and detected as a cluster of three peaks with a drift time of the most intense peak at 13.06 ms.
View Article and Find Full Text PDFA novel arsenic-selenium solution species was synthesized by reacting equimolar sodium selenite and sodium dimethylarsinate with 10 mol equiv of glutathione (pH 7.5) in aqueous solution. The solution species showed a single (77)Se NMR resonance at 112.
View Article and Find Full Text PDF