Publications by authors named "Gavilano J"

Quantum materials that feature magnetic long-range order often reveal complex phase diagrams when localized electrons become mobile. In many materials magnetism is rapidly suppressed as electronic charges dissolve into the conduction band. In materials where magnetism persists, it is unclear how the magnetic properties are affected.

View Article and Find Full Text PDF

NdCeCoIn features a magnetic field-driven quantum phase transition that separates two antiferromagnetic phases with an identical magnetic structure inside the superconducting condensate. Using neutron diffraction we demonstrate that the population of the two magnetic domains in the two phases is affected differently by the rotation of the magnetic field in the tetragonal basal plane. In the low-field SDW-phase the domain population is only weakly affected while in the high-field Q-phase they undergo a sharp switch for fields around the a-axis.

View Article and Find Full Text PDF

Unconventional superconductivity in many materials is believed to be mediated by magnetic fluctuations. It is an open question how magnetic order can emerge from a superconducting condensate and how it competes with the magnetic spin resonance in unconventional superconductors. Here we study a model d-wave superconductor that develops spin-density wave order, and find that the spin resonance is unaffected by the onset of static magnetic order.

View Article and Find Full Text PDF

The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a field-induced quantum phase transition, in superconducting NdCeCoIn, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field μ* = 8 T.

View Article and Find Full Text PDF

Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature T, while a helical or conical magnetic state prevails at lower temperatures.

View Article and Find Full Text PDF

We performed small-angle neutron scattering (SANS) measurements on the helimagnetic spinel compound ZnCr2Se4. The ground state of this material is a multi-domain spin-spiral phase, which undergoes domain selection in a magnetic field and reportedly exhibits a transition to a proposed spin-nematic phase at higher fields. We observed a continuous change in the magnetic structure as a function of field and temperature, as well as a weak discontinuous jump in the spiral pitch across the domain-selection transition upon increasing field.

View Article and Find Full Text PDF

The vortex lattice (VL) in the mixed state of the stannide superconductor Yb3Rh4Sn13 has been studied using small-angle neutron scattering (SANS). The field dependences of the normalized longitudinal and transverse correlation lengths of the VL, ξ(L)/a0 and ξ(T)/a0, reveal two distinct anomalies that are associated with vortex-glass phases below μ0Hl ≈ 700 G and above μ0Hh ∼ 1.7 T (a0 is the intervortex distance).

View Article and Find Full Text PDF

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortexlike objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of ∼25°.

View Article and Find Full Text PDF

We report the observation of a stepwise "melting" of the low-temperature Na-vacancy order in the layered transition-metal oxide Na0.7CoO2. High-resolution neutron powder diffraction analysis indicates the existence of two first-order structural transitions, one at T1≈290  K followed by a second at T2≈400  K.

View Article and Find Full Text PDF

Small-angle neutron scattering has been employed to study the influence of applied electric (E-)fields on the skyrmion lattice in the chiral lattice magnetoelectric Cu(2)OSeO(3). Using an experimental geometry with the E-field parallel to the [111] axis, and the magnetic field parallel to the [11(-)0] axis, we demonstrate that the effect of applying an E-field is to controllably rotate the skyrmion lattice around the magnetic field axis. Our results are an important first demonstration for a microscopic coupling between applied E-fields and the skyrmions in an insulator, and show that the general emergent properties of skyrmions may be tailored according to the properties of the host system.

View Article and Find Full Text PDF

We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Néel temperature.

View Article and Find Full Text PDF

We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn5 with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H is parallel to [100], a single VL orientation is observed, while a 90° reorientation transition is found for H is parallel to [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Γ=2.

View Article and Find Full Text PDF

The flux-line lattice in CaAlSi has been studied by small-angle neutron scattering. A well-defined hexagonal flux-line lattice is seen just above H(c1) in an applied field of only 54 Oe. A 30° reorientation of this vortex lattice has been observed in a very low field of 200 Oe.

View Article and Find Full Text PDF

We have studied the magnetic order inside the superconducting phase of CeCoIn5 for fields along the [1 0 0] crystallographic direction using neutron diffraction. We find a spin-density wave order with an incommensurate modulation Q=(q,q,1/2) and q=0.45(1), which within our experimental uncertainty is indistinguishable from the spin-density wave found for fields applied along [1 -1 0].

View Article and Find Full Text PDF

We report on small-angle neutron scattering studies of the intrinsic vortex lattice (VL) structure in detwinned YBa2Cu3O7 at 2 K, and in fields up to 10.8 T. Because of the suppressed pinning to twin-domain boundaries, a new distorted hexagonal VL structure phase is stabilized at intermediate fields.

View Article and Find Full Text PDF

We report the results of measurements of the dc susceptibility and the 23Na-NMR response of Na2V3O7, a recently synthesized, nonmetallic low dimensional spin system. Our results indicate that, upon reducing the temperature to below 100 K, the V4+ moments are gradually quenched, leaving only one moment out of nine active. The NMR data reveal a phase transition at very low temperatures.

View Article and Find Full Text PDF

We report the results of 7Li nuclear magnetic resonance (NMR) studies of LiVGe2O6, a quasi-one-dimensional spin S = 1 model system, at low temperatures. Our data, including NMR spectra and the temperature dependence of the spin-lattice relaxation rate T-11, indicate that a first-order phase transition occurs at T(c) approximately 23 K. The NMR response of LiVGe2O6 below T(c) suggests that the ordered phase is antiferromagnetic and has unusual features.

View Article and Find Full Text PDF