Publications by authors named "Gavan Holloway"

The outer capsid spike protein VP4 of rotaviruses is a major determinant of infectivity and serotype specificity. Proteolytic cleavage of VP4 into 2 domains, VP8* and VP5*, enhances rotaviral infectivity. Interactions between the VP4 carbohydrate-binding domain (VP8*) and cell surface glycoconjugates facilitate initial virus-cell attachment and subsequent cell entry.

View Article and Find Full Text PDF

Detection of viral infection by host cells leads to secretion of type I interferon, which induces antiviral gene expression. The class I major histocompatibility complex (MHCI) is required for viral antigen presentation and subsequent infected cell killing by cytotoxic T lymphocytes. STAT1 activation by interferon can induce NLRC5 expression, promoting MHCI expression.

View Article and Find Full Text PDF

Specific roles have been ascribed to each of the 12 known rotavirus proteins apart from the non-structural protein 6 (NSP6). However, NSP6 may be present at sites of viral replication within the cytoplasm. Here we report that NSP6 from diverse species of rotavirus A localizes to mitochondria via conserved sequences in a predicted N-terminal a-helix.

View Article and Find Full Text PDF

Rotavirus-cell binding is the essential first step in rotavirus infection. This binding is a major determinant of rotavirus tropism, as host cell invasion is necessary to initiate infection. Initial rotavirus-cell interactions are mediated by carbohydrate-recognizing domain VP8* of the rotavirus capsid spike protein VP4.

View Article and Find Full Text PDF

Rotavirus infection is a major cause of life-threatening infantile gastroenteritis. The innate immune system provides an immediate mechanism of suppressing viral replication and is necessary for an effective adaptive immune response. Innate immunity involves host recognition of viral infection and establishment of a powerful antiviral state through the expression of pro-inflammatory cytokines such as type-1 interferon (IFN).

View Article and Find Full Text PDF

Rotavirus is a leading cause of severe gastroenteritis in infants worldwide. Rotavirus nonstructural protein 1 (NSP1) is a virulence factor that inhibits innate host immune responses. NSP1 from some rotaviruses targets host interferon response factors (IRFs), leading to inhibition of type I interferon expression.

View Article and Find Full Text PDF

Histo-blood group antigens (HBGAs) have been proposed as rotavirus receptors. H type-1 and Lewis(b) antigens have been reported to bind VP8* from major human rotavirus genotypes P[4], P[6] and P[8], while VP8* from a rarer P[14] rotavirus recognizes A-type HBGAs. However, the role and significance of HBGA receptors in rotavirus pathogenesis remains uncertain.

View Article and Find Full Text PDF

The importance of innate immunity to rotaviruses is exemplified by the range of strategies evolved by rotaviruses to interfere with the IFN response. We showed previously that rotaviruses block gene expression induced by type I and II IFNs, through a mechanism allowing activation of signal transducer and activator of transcription (STAT) 1 and STAT2 but preventing their nuclear accumulation. This normally occurs through activated STAT1/2 dimerization, enabling an interaction with importin α5 that mediates transport into the nucleus.

View Article and Find Full Text PDF

Unlabelled: N-acetyl- and N-glycolylneuraminic acids (Sia) and α2β1 integrin are frequently used by rotaviruses as cellular receptors through recognition by virion spike protein VP4. The VP4 subunit VP8*, derived from Wa rotavirus, binds the internal N-acetylneuraminic acid on ganglioside GM1. Wa infection is increased by enhanced internal Sia access following terminal Sia removal from main glycan chains with sialidase.

View Article and Find Full Text PDF

Rotavirus is a leading cause of severe dehydrating diarrhoea in infants and young children. Following rotavirus infection in the intestine an innate immune response is rapidly triggered. This response leads to the induction of type I and type III interferons (IFNs) and other cytokines, resulting in a reduction in viral replication.

View Article and Find Full Text PDF

Many bacterial pathogens utilize a type III secretion system to deliver multiple effector proteins into host cells. Here we found that the type III effectors, NleE from enteropathogenic E. coli (EPEC) and OspZ from Shigella, blocked translocation of the p65 subunit of the transcription factor, NF-kappaB, to the host cell nucleus.

View Article and Find Full Text PDF

Intestinal epithelial cell death following rotavirus infection is associated with villus atrophy and gastroenteritis. Roles for both apoptosis and necrosis in cytocidal activity within rotavirus-infected epithelial cells have been proposed. Additionally, inactivated rotavirus has been reported to induce diarrhoea in infant mice.

View Article and Find Full Text PDF

A vital arm of the innate immune response to viral infection is the induction and subsequent antiviral effects of interferon (IFN). Rotavirus reduces type I IFN induction in infected cells by the degradation of IFN regulatory factors. Here, we show that the monkey rotavirus RRV and human rotavirus Wa also block gene expression induced by type I and II IFNs through a mechanism allowing signal transducer and activator of transcription 1 (STAT1) and STAT2 activation but preventing their nuclear accumulation.

View Article and Find Full Text PDF

We used NMR spectroscopy, molecular modeling and infectivity competition assays to investigate the key interactions between the spike protein (VP8(*)) from 'sialidase-insensitive' human Wa and 'sialidase-sensitive' porcine CRW-8 rotaviruses and the glycans of gangliosides G(M1) and G(D1a). Our data provide strong evidence that N-acetylneuraminic acid is a key determinant for binding of these rotaviruses. This is in contrast to the widely accepted paradigm that sialic acids are irrelevant in host cell recognition by sialidase-insensitive rotaviruses.

View Article and Find Full Text PDF

Changes in the interactions between intestinal cells and their surrounding environment during virus infection have not been well documented. The growth and survival of intestinal epithelial cells, the main targets of rotavirus infection, are largely dependent on the interaction of cell surface integrins with the extracellular matrix. In this study, we detected alterations in cellular integrin expression following rotavirus infection, identified the signaling components required, and analyzed the subsequent effects on cell binding to the matrix component collagen.

View Article and Find Full Text PDF

The VP8* subunit of rotavirus spike protein VP4 contains a sialic acid (Sia)-binding domain important for host cell attachment and infection. In this study, the binding epitope of the N-acetylneuraminic acid (Neu5Ac) derivatives has been characterized by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy. From this STD NMR data, it is proposed that the VP8* core recognizes an identical binding epitope in both methyl alpha-D-N-acetylneuraminide (Neu5Acalpha2Me) and the disaccharide methyl S-(alpha-D-N-acetylneuraminosyl)-(2-->6)-6-thio-beta-D-galactopyranoside (Neu5Ac-alpha(2,6)-S-Galbeta1Me).

View Article and Find Full Text PDF

Rotavirus infection is known to regulate transcriptional changes in many cellular genes. The transcription factors NF-kappaB and AP-1 are activated by rotavirus infection, but the upstream processes leading to these events are largely unidentified. We therefore studied the activation state during rotavirus infection of c-Jun NH2-terminal kinase (JNK) and p38, which are kinases known to activate AP-1.

View Article and Find Full Text PDF

Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus.

View Article and Find Full Text PDF

Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by the virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported.

View Article and Find Full Text PDF

HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle.

View Article and Find Full Text PDF

The nef gene product of human immunodeficiency virus type 1 (HIV-1) is important for the induction of AIDS, and key to its function is its ability to manipulate T-cell function by targeting cellular signal transduction proteins. We reported that Nef coprecipitates a multiprotein complex from cells which contains tumor suppressor protein p53. We now show that Nef interacts directly with p53.

View Article and Find Full Text PDF