A quantal model description of a discrete localized skyrmion singularity embedded in a ferromagnetic environment is proposed. It allows discussing the importance of various parameters in the appearance of a quantal skyrmion singularity. Analysis of the skyrmion reveals a few specific quantal properties: presence of a whole series of skyrmion states, non-classical nature of the local spins, presence of superposition states and presence of extra-skyrmion states due to the quantization of the central spin of the singularity.
View Article and Find Full Text PDFThe creation of molecule-like structures in which magnetic atoms interact controllably is full of potential for the study of complex or strongly correlated systems. Here, we create spin chains in which a strongly correlated Kondo state emerges from magnetic coupling of transition-metal atoms. We build chains up to ten atoms in length by placing Fe and Mn atoms on a CuN surface with a scanning tunneling microscope.
View Article and Find Full Text PDFScanning tunnelling microscopy and density functional theory studies of manganese chains adsorbed on Cu2N/Cu (100) reveal an unsuspected electronic edge state at [Formula: see text] eV above the Fermi energy. This Tamm-like state is strongly localised to the terminal Mn atoms of the chain and fully spin polarised. However, no equivalence is found for occupied states, and the electronic structure at [Formula: see text] -1 eV is mainly spin unpolarised due to the extended p-states of the N atoms that mediate the coupling between the Mn atoms in the chain.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2015
Due to the quantum evolution of molecular magnetic moments, the magnetic state of nanomagnets can suffer spontaneous changes. This process can be completely quenched by environment-induced decoherence. However, we show that for typical small supported atomic objects, the substrate-induced decoherence does change the magnetic-moment evolution but does not quell it.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2014
Inelastic electron tunneling spectra (IETS) are evaluated for spin-1/2 Heisenberg chains showing different phases of their spin ordering. The spin ordering is controlled by the value of the two different Heisenberg couplings on the two sides of each of the chain's atoms (bond-alternating chains). The perfect anti-ferromagnetic phase, i.
View Article and Find Full Text PDFJ Phys Condens Matter
March 2014
Spin-transport calculations present certain difficulties which are sometimes overlooked when using density-functional theory (DFT) to analyze and predict the behavior of molecular-based devices. We analyze and give examples of some caveats of spintronic calculations using DFT. We first describe how the broken-symmetry problem of DFT can cause serious problems in the evaluation of the spin polarization of electron currents.
View Article and Find Full Text PDFThe controlled switching between two quasistable Néel states in adsorbed antiferromagnetic Fe chains has recently been achieved by Loth et al. [Science 335, 196 (2012)] using tunneling electrons from an STM tip. In order to rationalize their data, we evaluate the rate of tunneling electron-induced switching between the Néel states.
View Article and Find Full Text PDFAlthough noise is observed in many experiments, it is rarely used as a source of information. However, valuable information can be extracted from noisy signals. The motion of particles on a surface induced, for example, by thermal activation or by the interaction with the tip of a scanning tunnelling microscope may lead to fluctuations or switching of the tunnelling current.
View Article and Find Full Text PDFThe excitation of the spin degrees of freedom of an adsorbed atom by tunneling electrons is computed using strong coupling theory. Recent measurements [Heinrich, Science 306, 466 (2004)] reveal that electron currents in a magnetic system efficiently excite its magnetic moments. Our theory shows that the incoming electron spin strongly couples with that of the adsorbate so that memory of the initial spin state is lost, leading to large excitation efficiencies.
View Article and Find Full Text PDFThe present theoretical study shows that a double chain of Cu metal atoms adsorbed on a Cu(111) metal surface can guide an excited electron for distances exceeding 10 nm. The nanostructure appears to be quasi-decoupled from the substrate and thus to act as a nanowire. The origin of the above phenomenon is the interference between the decay of the quasistationary 1D sp-band states localized on each chain.
View Article and Find Full Text PDFWe have performed a joint experimental and theoretical study of the unoccupied electronic structure of alkali adsorbates on the (111) surfaces of Cu and Ag. Combining angle- and time-resolved two-photon photoemission spectroscopy with wave packet propagation calculations we show that, along with the well known sigma resonance oriented along the surface normal, there exist long-lived alkali-localized resonances oriented parallel to the surface (pi symmetry). These new resonances are stabilized by the projected band gap of the substrate and emerge primarily from the mixing of the p and d Rydberg orbitals of the free alkali atom modified by the interaction with the surface.
View Article and Find Full Text PDFWe present a joint experimental-theoretical study of the one-dimensional band of excited electronic states with sp character localized on Cu nanowires supported on a Cu(111) surface. Energy dispersion and lifetime of these states have been obtained, allowing the determination of the mean distance traveled by an excited electron along the nanowire before it escapes into the substrate. We show that a Cu nanowire supported on a Cu(111) surface can guide a one-dimensional electron flux over a short distance and thus can be considered as a possible component for nanoelectronics devices.
View Article and Find Full Text PDFThe Cu adatom-induced localization of the two-dimensional Shockley surface state at the Cu(111) surface was identified from experimental and simulated scanning tunneling microscopy spectra. The localization gives rise to a resonance located just below the surface state band edge. The adatom-induced surface state localization is discussed in terms of the existence theorem for bound states in any attractive two-dimensional potential.
View Article and Find Full Text PDFCharge transfer during back scattering of a H- ion from a Cu(111) metal surface with Cs adsorbates is studied theoretically within a wave packet propagation approach. We show that the long lifetime of the Cs-localized state in the Cs/Cu(111) system deeply modifies the nature of projectile-surface charge transfer, suppressing its irreversible character. Back and forth electron transfer between the projectile and the adsorbate during the collision results in characteristic oscillations in the H- yield as a function of projectile energy.
View Article and Find Full Text PDFThe effect of an atomically thin Ar layer on the image-potential states on Cu(100) surfaces is studied in a joint experimental-theoretical study, allowing a detailed analysis of the interaction between a surface electron and a thin insulator layer. A microscopic theoretical description of the Ar layer is developed based on mutually polarizing Ar atoms. Account of the 3D Ar layer structure allows one to predict energies and lifetimes of the image states in excellent agreement with the observations.
View Article and Find Full Text PDFThe formation of negative ions (H-, O-, S-, F-, Cl-) is studied for grazing scattering of fast ions from Cu(110) and Cu(111) surfaces. In a detailed experimental and theoretical investigation we reveal that the projected L-band gap of the Cu metal affects charge transfer in a specific manner. From the analysis of the negative ion fractions as functions of projectile velocity we conclude that, for the Cu(111) surface the electronic 2D surface state continuum plays an essential role in the projectile-surface electron transfer.
View Article and Find Full Text PDFIt has been shown recently that the peculiarities of the band structure of a metal can qualitatively influence the electron tunnelling between an adsorbate and a metal surface, the so-called resonant charge transfer (RCT). The presence of a projected band gap along the normal to the surface in the case of Cu(111) has been shown to lead to a blocking of the RCT in the case of Cs/Cu(111), resulting in the existence of a very long-lived excited state. Such long-lived states are potentially very important for surface reaction mechanisms invoking a transient state as an intermediate.
View Article and Find Full Text PDFOne-electron and multielectron contributions to the decay of transient states in the Cs/Cu(111) and (100) systems are studied by a joined wave-packet propagation and many-body metal response approach. The long lifetime of these states is due to the Cu L and X band gaps which reduce the electron tunneling between Cs and Cu. In the (111) case, the decay is mainly by inelastic e-e interaction, whereas in the (100) case, electron tunneling is dominating.
View Article and Find Full Text PDFElectron capture by Li+ and H projectiles in grazing scattering from Cu(111) and Cu(110) surfaces is studied experimentally and theoretically. Whereas data for Cu(110) can be described by established theoretical methods treating resonant charge transfer with a free-electron metal, data for Cu(111) show pronounced deviations from this approach. We interpret our observations by the effect of the projected L-band gap of the Cu(111) surface.
View Article and Find Full Text PDFPhys Rev B Condens Matter
December 1996
Phys Rev B Condens Matter
September 1994