Acquiring multiple high magnification, high resolution images with scanning electron microscopes (SEMs) for quantitative analysis is a time consuming and repetitive task for microscopists. We propose a workflow to automate SEM image acquisition and demonstrate its use in the context of nanoparticle (NP) analysis. Acquiring multiple images of this type of specimen is necessary to obtain a complete and proper characterization of the NP population and obtain statistically representative results.
View Article and Find Full Text PDFTissue Eng Part C Methods
December 2024
Hypertrophic scarring is a common complication in severely burned patients who undergo autologous skin grafting. Meshed skin grafts tend to contract during wound healing, increasing the risk of pathological scarring. Although various technologies have been used to study cellular contraction, current methods for measuring contractile forces at the tissue level are limited and do not replicate the complexity of native tissues.
View Article and Find Full Text PDFElectron beam damage in electron microscopes is becoming more and more problematic in material research with the increasing demand of characterization of new beam sensitive material such as Li based compounds used in lithium-ion batteries. To avoid radiolysis damage, it has become common practice to use Cryo-EM, however, knock-on damage can still occur in conventional TEM/STEM with a high-accelerating voltage (200-300 keV). In this work, electron energy loss spectroscopy with an accelerating voltage of 30,20 and 10 keV was explored with h-BN, TiB and TiN compounds.
View Article and Find Full Text PDFIn this work, the configuration of compact TiO coating (c-TiO) interface as electron transport layer (ETL) in giving rise to loss and gain of fill factor (FF) and therefore modulation of hysteresis behavior in perovskite solar cells (PSCs) is investigated. For this purpose, PSCs based on planar compact TiO (c-TiO) as well as a scaffold-based architecture are studied. In the latter case c-TiO coats a hydrothermally grown titania nanorod scaffold.
View Article and Find Full Text PDFEfficient plastic recycling processes are crucial for the production of value-added products or intermediates. Here, we present a multicatalytic route that allows the degradation of nitrile-butadiene rubber, cross-metathesis of the formed oligomers, and polymerization of the resulting dicarboxylic acids with bio-based diols, providing direct access to unsaturated polyesters. This one-pot approach combines the use of commercially available catalysts that are active and selective under mild conditions to synthesize renewable copolymers without the need to isolate intermediates.
View Article and Find Full Text PDFTo fulfill power and energy demands, lithium-ion battery (LIB) is being considered as a promising energy storage device. For the development of LIBs, high-resolution electron microscopy characterization of battery materials is crucial. During this characterization, the interaction of beam-electrons with Li-containing materials causes damage through several processes, especially knock-on damage.
View Article and Find Full Text PDFThis study introduces a universal equation to calculate the geometrical correction factor (G) as the fourth factor in the conventional ZAF method for quantifying spherical particles (specifically, NIST-K411 glass microspheres mounted on bulk carbon substrate). Note that the fluorescence correction factor (F) is not considered in this study. Our findings demonstrate that the G factor, as a function of the particle diameter (D) and the range of emitted X-rays in a bulk sample (Xe), provides the best model.
View Article and Find Full Text PDFO-labelled tungsten siloxide complexes [WOCl(OSiBu)] (1-Cl) and [WOMe(OSiBu)] (1-Me) were prepared and characterized by O MAS NMR, with input from theoretical calculations of NMR parameters. Guidelines linking O NMR parameters and the coordination sphere of molecular and silica-grafted tungsten oxo species are proposed. The grafting of 1-Me on SiO afforded material 2, with surface species [(SiO)WOMe(OSiBu)] as shown by elemental analysis, IR and H and C MAS NMR.
View Article and Find Full Text PDFIn this study, to elucidate the origin of inductance and its relationship with the phenomenon of hysteresis in hybrid perovskite solar cells (PSCs), two electron transport layer (ETL) structures have been utilized: (a) rutile titania nanorods grown over anatase titania (AR) and (b) anatase titania covering the rutile titania nanorods (RA). The rutile and anatase phases are prepared hydrothermal synthesis and spray pyrolysis, respectively. PSCs based on an ETL with an RA structure attain higher short-circuit current density () and open-circuit voltage () while showing a slightly lower fill factor (FF) compared with their AR counterparts.
View Article and Find Full Text PDFUltramicroscopy
December 2022
A novel approach, termed line-rotated remapping (LRR), for high resolution electron backscatter diffraction is proposed to remap patterns with large rotation. In LRR, the displacements during the first-pass cross-correlation is modified to a function of the corresponding Kikuchi lines and the points on the reference pattern. Then, the finite rotation matrix to remap the test pattern to a similar orientation of the reference pattern is determined using the parameters of the Kikuchi lines.
View Article and Find Full Text PDFThe most versatile furanic building block for chemical and polymer applications is 2,5-furandicarboxylic acid. However, the classical 2,5-furandicarboxylic acid production methodology has been found to have significant drawbacks that hinder industrial-scale production. This review highlights new alternative methods to synthesize 2,5-furandicarboxylic acid that are both more advantageous and attractive than conventional oxidation of 5-hydroxymethylfurfural.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2022
Aluminas are strategic materials used in many major industrial processes, either as catalyst supports or as catalysts in their own right. The transition alumina γ-Al O is a privileged support, whose reactivity can be tuned by thermal activation. This study provides a qualitative and quantitative assessment of the hydroxyl groups present on the surface of γ-Al O at three different dehydroxylation temperatures.
View Article and Find Full Text PDFIn the past few decades, nanostructured carbons (NCs) have been investigated for their interesting properties, which are attractive for a wide range of applications in electronic devices, energy systems, sensors, and support materials. One approach to improving the properties of NCs is to dope them with various heteroatoms. This work describes the synthesis and study of sulfur-added carbon nanohorns (S-CNH).
View Article and Find Full Text PDFGenerating quantitative phase maps is unvaluable to access the phase distribution in a material. X-ray hyperspectral mapping using an energy dispersive spectrometer (EDS) attached to a scanning electron microscope (SEM) is the most practical way to collect these data, mainly due to its relatively ease of operation and availability around the world. In this work, we demonstrate an innovative technique to produce high-quality phase maps based on the correlation between each hyperspectral image pixel spectrum and a set of standards spectra.
View Article and Find Full Text PDFThis review highlights recent developments in the field of biodegradable polymeric materials intended to replace non-degradable conventional plastics, focusing on studies from the last ten years involving the stereoselective ring-opening polymerization of cyclic esters. This encompasses exciting advances in both catalyst design and monomer scope. Notably, the last decade has seen the emergence of metal-free stereocontrolled ROP for instance, as well as the synthesis and stereocontrolled polymerization of new types of chiral monomers.
View Article and Find Full Text PDFMonte Carlo simulations were performed to investigate the behavior of the peak to background ratio (P/B) of particles on a substrate as a function of different variables such as take-off angle, tilt angle, particle size, and beam energy. The results showed that the P/B highly depends on the beam energy, the size of particles, and the composition of the substrates. Results showed that the rate of intensity reduction of the peak is less than the background for a high tilt angle (60 degrees), and thereby, the P/B increases at a high tilt angle.
View Article and Find Full Text PDFThe f-ratio method is a new quantitative X-ray microanalysis method developed based on a cold field emission scanning electron microscope/energy dispersive spectroscopy system. The f-ratio is calculated with the characteristic X-ray intensities, and the Monte Carlo simulation is employed to build the theoretical relation between the system composition and the f-ratio. In this study, the f-ratio model is formulated with the elemental concentrations and the f-ratio coefficients.
View Article and Find Full Text PDFThe measurement of dipolar and J- couplings between Si and O isotopes is challenging owing to (i) the low abundance of both isotopes and (ii) their close Larmor frequencies, which only differ by 19%. These issues are circumvented here by the use of isotopic enrichment and dedicated triple-resonance magic-angle spinning NMR probe. The surface of Si-enriched silica was labelled with O isotope and heated at 80 and 200 °C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2021
Photocatalysts able to trigger the production of singlet oxygen species are the topic of intense research efforts in organic synthesis. Yet, challenges still exist in improving their activity and optimizing their use. Herein, we exploited the benefits of plasmonic nanoparticles to boost the activity of such photocatalysts via an antenna effect in the visible range.
View Article and Find Full Text PDFNeutral and ionic ruthenium and iron aliphatic PNHP-type pincer complexes (PNHP = NH(CH2CH2PiPr2)2) bearing benzyl, n-butyl or tert-butyl isocyanide ancillary ligands have been prepared and characterized. Reaction of [RuCl2(PNHP)]2 with one equivalent CN-R per ruthenium center affords complexes [RuCl2(PNHP)(CNR)] (R = benzyl, 1a, R = n-butyl, 1b, R = t-butyl, 1c), with cationic [RuCl(PNHP)(CNR)2]Cl 2a-c as side-products. Dichloride species 1a-c react with excess NaBH4 to afford [RuH(PNHP)(BH4)(CN-R)] 3a-c, analogues to benchmark Takasago catalyst [RuH(PNHP)(BH4)(CO)].
View Article and Find Full Text PDFThe microstructures of quenched and tempered steels have been traditionally explored by transmission electron microscopy (TEM) rather than scanning electron microscopy (SEM) since TEM offers the high resolution necessary to image the structural details that control the mechanical properties. However, scanning electron microscopes, apart from providing larger area coverage, are commonly available and cheaper to purchase and operate compared to TEM and have evolved considerably in terms of resolution. This work presents detailed comparison of the microstructure characterization of quenched and tempered high-strength steels with TEM and SEM electron channeling contrast techniques.
View Article and Find Full Text PDFElectron tomography has been widely applied to three-dimensional (3D) morphology characterization and chemical analysis at the nanoscale. A HAADF-EDS bimodal tomographic (HEBT) reconstruction technique has been developed to extract high resolution element-specific information. However, the reconstructed elemental maps cannot be directly converted to quantitative compositional information.
View Article and Find Full Text PDFIn this paper, electrophoretic deposition (EPD) is shown to promote nanoscale assembling of graphene oxide (GO) enabling the fabrication of highly homogeneous, robust, and capacity fade resistant composite titanium niobate (TiNb2O7, TNO)/rGO anodes upon reductive annealing. Control tests revealed that EPD is superior to conventional PVDF-based casting in maximizing the performance benefits from using reduced GO in Li-ion electrode fabrication as is the case of TNO that is plagued with conductivity and capacity fading problems. In this particular study, we show that there is a synergy developed between GO and EPD with the former (1) stabilizing the EPD suspension, (2) acting as a flexible binder net that affords mechanical integrity during the volume expansion of TNO, (3) serving as a conductive filler, and (4) contributing to Li-ion storage via pseudocapacitance.
View Article and Find Full Text PDFDendrite formation, which could cause a battery short circuit, occurs in batteries that contain lithium metal anodes. In order to suppress dendrite growth, the use of electrolytes with a high shear modulus is suggested as an ionic conductive separator in batteries. One promising candidate for this application is LiLaZrO (LLZO) because it has excellent mechanical properties and chemical stability.
View Article and Find Full Text PDFA method of calculating the magnitude of the core hole screening of lithium materials is implemented for the simulation of Energy Loss Near Edge Structure (ELNES). ELNES is calculated for a range of lithium materials resulting in improved agreement between calculation and experiment. The technique uses linear response theory to relate the electron density to the core hole shielding contribution from the valence electrons in a crystal.
View Article and Find Full Text PDF