This work aims at designing functional biomaterials through selective chemical modification of xylan from beechwood. Acidic hydrolysis of xylan led to well-defined oligomers with an average of six xylose units per chain and with an aldehyde group at the reductive end. Reductive amination was performed on this aldehyde end group to introduce an azide reactive group.
View Article and Find Full Text PDFIn this work, we have studied field-induced aggregation and magnetic separation-realized in a microfluidic channel equipped with a single magnetizable micropillar-of multicore iron oxide nanoparticles (IONPs) also called "nanoflowers" of an average size of 27 ± 4 nm and covered by either a citrate or polyethylene (PEG) monolayer having a thickness of 0.2⁻1 nm and 3.4⁻7.
View Article and Find Full Text PDFChem Commun (Camb)
November 2017
A thermo-responsive end-cap based on a retro-Diels-Alder and subsequent furan elimination reaction was developed. It was used to cap poly(ethyl glyoxylate), allowing end-to-end depolymerization upon thermal triggering. Using block copolymers, thermo-responsive micelles and vesicles were prepared and shown to disassemble upon heating.
View Article and Find Full Text PDFThe polyol route is a versatile and up-scalable method to produce large batches of iron oxide nanoparticles with well-defined structures and magnetic properties. Importance of parameters such as temperature and reaction time, heating profile, nature of the polyol solvent or organometallic precursors on nanostructure and properties has already been described in the literature. Yet, the crucial role of water in the forced hydrolysis pathway has never been reported, despite its mandatory presence for nanoparticle production.
View Article and Find Full Text PDF